Foundations of Physics

, Volume 42, Issue 11, pp 1469–1479 | Cite as

Canonical Quantization of a Massive Weyl Field

  • Maxim Dvornikov


We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.


Weyl field Hamilton formalism Quantization Majorana neutrino 



I am very thankful to D.M. Gitman, J. Lukierski, and J. Maalampi for helpful discussions, to S. Forte for bringing Ref. [16] to my attention, as well as to FAPESP (Brazil) for a grant.


  1. 1.
    Kobzarev, I.Y., Martem’yanov, B.V., Okun’, L.B., Shchepkin, M.G.: The phenomenology of neutrino oscillations. Sov. J. Nucl. Phys. 32, 823–828 (1980) Google Scholar
  2. 2.
    Schechter, J., Valle, J.W.F.: Neutrino masses in SU(2)⊗U(1) theories. Phys. Rev. D 22, 2227–2235 (1980) ADSCrossRefGoogle Scholar
  3. 3.
    Auger, M., et al. (EXO Collaboration): Search for neutrinoless double-beta decay in 136Xe with EXO-200. Phys. Rev. Lett. 109, 032505 (2012). arXiv:1205.5608 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    Andreotti, E., et al. (CUORICINO Collaboration): 130Te neutrinoless double-beta decay with CUORICINO. Astropart. Phys. 34, 822–831 (2011). arXiv:1012.3266 [nucl-ex] ADSCrossRefGoogle Scholar
  5. 5.
    Chamon, C., Jackiw, R., Nishida, Y., Pi, S.-Y., Santos, L.: Quantizing Majorana fermions in a superconductor. Phys. Rev. B 81, 224515 (2010). arXiv:1001.2760 [cond-mat.str-el] ADSCrossRefGoogle Scholar
  6. 6.
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory, p. 694. McGraw-Hill, New York (1980) Google Scholar
  7. 7.
    Goldhaber, M., Grodzins, L., Sunyar, A.W.: Helicity of neutrinos. Phys. Rev. 109, 1015–1017 (1958) ADSCrossRefGoogle Scholar
  8. 8.
    Fukugita, M., Yanagida, T.: Physics of Neutrinos and Applications to Astrophysics, pp. 289–319. Springer, Berlin (2003) Google Scholar
  9. 9.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. pp. 10–89. Wiley, New York (1980) Google Scholar
  10. 10.
    Schechter, J., Valle, J.W.F.: Majorana neutrinos and magnetic fields. Phys. Rev. D 24, 1883–1889 (1981) ADSCrossRefGoogle Scholar
  11. 11.
    Weinberg, S.: The Quantum Theory of Fields: Foundations, 2nd edn. pp. 292–338. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
  12. 12.
    Ahluwalia, D.V., Lee, C.-Y., Schritt, D.: Self-interacting Elko dark matter with an axis of locality. Phys. Rev. D 83, 065017 (2011). arXiv:0911.2947 [hep-ph] ADSCrossRefGoogle Scholar
  13. 13.
    An, F.P., et al. (Daya Bay Collaboration): Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex] ADSCrossRefGoogle Scholar
  14. 14.
    Abe, Y., et al. (Double Chooz Collaboration): Indication of reactor \(\bar{\nu}_{e}\) disappearance in the double Chooz experiment. Phys. Rev. Lett. 108, 131801 (2012). arXiv:1112.6353 [hep-ex] ADSCrossRefGoogle Scholar
  15. 15.
    Dvornikov, M.: Field theory description of neutrino oscillations. In: Greene, J.P. (ed.) Neutrinos: Properties, Sources and Detection, pp. 23–90. NOVA Science Publishers, New York (2011). arXiv:1011.4300 [hep-ph] Google Scholar
  16. 16.
    Faddeev, L., Jackiw, R.: Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Gantmacher, F.: Lectures in Analytical Mechanics, pp. 71–80. Mir Publishers, Moscow (1975) Google Scholar
  18. 18.
    Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints, pp. 13–21. Springer, Berlin (1990) MATHGoogle Scholar
  19. 19.
    Berestetskiĭ, V.B., Lifshitz, E.M., Pitaevskiĭ, L.P.: Quantum Electrodynamics, 2nd edn. p. 86. Pergamon, Oxford (1980) Google Scholar
  20. 20.
    Case, K.M.: Reformulation of the Majorana theory of the neutrino. Phys. Rev. 107, 307–316 (1957) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Gitman, D.M., Gonçalves, A.E., Tyutin, I.V.: New pseudoclassical model for Weyl particles. Phys. Rev. D 50, 5439–5442 (1994) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. pp. 140–143. Butterworth-Heinemann, Amsterdam (1994) Google Scholar
  24. 24.
    Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Phys. Usp. 40, 1087–1116 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    Dvornikov, M., Maalampi, J.: Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field. Phys. Rev. D 79, 113015 (2009). arXiv:0809.0963 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of São PauloSão PauloBrazil
  2. 2.Pushkov Institute of Terrestrial MagnetismIonosphere and Radiowave Propagation (IZMIRAN)TroitskRussia

Personalised recommendations