Skip to main content
Log in

Study on a Possible Darwinian Origin of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheeler, J.A.: On recognizing law without law. Am. J. Phys. 51, 398–404 (1983)

    Article  ADS  Google Scholar 

  2. Goldstein, S.: Bohmian Mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2006 Edition). http://plato.stanford.edu/archives/sum2006/entries/qm-bohm/ (2006)

  3. Baladrón, C.: In search of the adaptive foundations of quantum mechanics. Physica E 42, 335–338 (2010)

    Article  ADS  Google Scholar 

  4. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  5. Davidson, M.: The generalized Fényes-Nelson model for free scalar field theory. Lett. Math. Phys. 4, 101–106 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  7. ’t Hooft, G.: Quantum mechanics and determinism. arXiv:hep-th/0105105 (2001)

  8. ’t Hooft, G.: Determinism beneath quantum mechanics. arXiv:quant-ph/0212095 (2002)

  9. Khrennikov, A., Volovich, Y.: Discrete time dynamical models and their quantum-like context-dependent properties. J. Mod. Opt. 51, 1113–1114 (2004)

    MathSciNet  ADS  Google Scholar 

  10. Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin Heidelberg, New York (2009)

    Book  MATH  Google Scholar 

  11. Timpson, C.G.: Philosophical aspects of quantum information theory. arXiv:quant-ph/0611187 (2006)

  12. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. De Raedt, H., De Raedt, K., Michielsen, K., Keipema, K., Miyashita, S.: Event-by-event simulation of quantum phenomena: application to Einstein-Podolsky-Rosen-Bohm experiments. J. Comput. Theor. Nanosci. 4, 957–991 (2007)

    Google Scholar 

  14. Accardi, L.: Topics in quantum probability. Phys. Rep. 77, 169–192 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. Haisch, B., Rueda, A., Dobyns, Y.: Inertial mass and the quantum vacuum fields. Ann. Phys. 10, 393–414 (2001)

    Article  MATH  Google Scholar 

  16. Bennett, C.H.: Logical depth and physical complexity. In: Herken, R. (ed.) The Universal Turing Machine. A Half-Century Survey, pp. 227–257. Oxford University Press, Oxford (1988)

    Google Scholar 

  17. Frieden, B.R., Soffer, B.H.: Lagrangians of physics and the game of Fisher-information transfer. Phys Rev. E 52, 2274–2286 (1995)

    Article  ADS  Google Scholar 

  18. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  19. Caves, C.M., Fuchs, C.A., Schack, R.: Subjective probability and quantum certainty. arXiv:quant-ph/0608190 (2006)

  20. Callender, C.: The emergence and interpretation of probability in Bohmian mechanics. Stud. Hist. Philos. Mod. Phys. 38, 351–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Summhammer, J.: Maximum predictive power and the superposition principle. Int. J. Theor. Phys. 33, 171–178 (1994)

    Article  MathSciNet  Google Scholar 

  22. Aerts, S.: An operational characterization for optimal observation of potential properties in quantum theory and signal analysis. Int. J. Theor. Phys. 47, 2–14 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  24. Pavlovic, D.: On quantum statistics in data analysis. arXiv:0802.1296 [cs.IR] (2008)

  25. Frieden, B.R.: Fisher information as the basis for the Schrödinger wave equation. Am. J. Phys. 57, 1004–1008 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wooters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  27. Huang, Z., Kais, S.: Entanglement as measure of electron-electron correlation in quantum chemistry. Chem. Phys. Lett. 413, 1–5 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Baladrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baladrón, C. Study on a Possible Darwinian Origin of Quantum Mechanics. Found Phys 41, 389–395 (2011). https://doi.org/10.1007/s10701-010-9428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9428-0

Keywords

Navigation