Skip to main content
Log in

On EPR-Type Entanglement in the Experiments of Scully et al. I. The Micromaser Case and Delayed-Choice Quantum Erasure

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Delayed-choice erasure is investigated in two-photon two-slit experiments that are generalizations of the micromaser experiment of Scully et al. (Nature 351:111–116, 1991). Applying quantum mechanics to the localization detector, it is shown that erasure with delayed choice in the sense of Scully, has an analogous structure as simple erasure. The description goes beyond probabilities. The EPR-type disentanglement, consisting in two mutually incompatible distant measurements, is used as a general framework in both parts of this study. Two simple coherence cases are shown to emerge naturally, and they are precisely the two experiments of Scully et al. The treatment seems to require the relative-reality-of-unitarily-evolving-state (RRUES) approach. Besides insight in the experiments, this study has also the goal of insight in quantum mechanics. The question is if the latter can be more than just a “book-keeping device” for calculating probabilities as Scully et al. modestly and cautiously claim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scully, M.O., Drühl, K.: Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed-choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982)

    Article  ADS  Google Scholar 

  2. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  3. Wheeler, J.A.: The ‘past’ and the delayed-choice double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic, New York (1978)

    Google Scholar 

  4. Kwiat, P.G., Steinberg, A.M., Chiao, R.Y.: Observation of a “quantum eraser”: a revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729–7739 (1992)

    Article  ADS  Google Scholar 

  5. Herbut, F., Vujičić, M.: First-quantisation quantum-mechanical insight into the Hong-Ou-Mandel two-photon interferometer with polarizers and its role as a quantum eraser. Phys. Rev. A 56, 1–5 (1997)

    Article  Google Scholar 

  6. Scully, M.O., Walther, H.: An operational analysis of quantum eraser and delayed choice. Found. Phys. 28, 399–413 (1998)

    Article  Google Scholar 

  7. Herbut, F., Vujičić, M.: Distant measurement. Ann. Phys (N.Y.) 96, 382–405 (1976)

    Article  ADS  Google Scholar 

  8. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  Google Scholar 

  9. Young, T.: Trans. R. Soc. XCII 12, 387 (1802). A quantum-mechanical discussion in [42]

    Article  Google Scholar 

  10. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III, pp. 1–9. Addison–Wesley, Reading (1965)

    MATH  Google Scholar 

  11. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)

    ADS  Google Scholar 

  12. Herbut, F.: Quantum probability law from ‘environment-assisted invariance’ in terms of pure-state twin unitaries. J. Phys. A: Math. Theor. 40, 5949–5971 (2007). arXiv:quant-ph/0611220

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Vujičić, M., Herbut, F.: A quantum-mechanical theory of distant correlations. J. Math. Phys. 25, 2253–2259 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cantrell, C.D., Scully, M.O.: The EPR paradox revisited. Phys. Rep. 43, 499–508 (1978)

    Article  ADS  Google Scholar 

  15. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  16. Aspect, A., Grangier, P.: Experiments on Einstein-Podolsky-Rosen-type correlations with pairs of visible photons. In: Proc. Int. Symp. Foundations of Quantum Mechanics. Tokyo, pp. 214–224 (1983)

  17. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y., Scully, M.O.: Delayed “choice” quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000). arXiv:quant-ph/9903047

    Article  ADS  Google Scholar 

  19. Englert, B.-G., Scully, M.O., Walther, H.: Quantum erasure in double-slit interferometers with which-way detectors. Am. J. Phys. 67, 325–329 (1999)

    Article  ADS  Google Scholar 

  20. Bohr, N.: Atomic Physics and Human Knowledge. Science Editions Inc., New York (1961)

    Google Scholar 

  21. Shimony, A.: Role of the observer in quantum theory. Am. J. Phys. 31, 755–773 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Friedman, J.R., Patel, V., Chen, W., Tolpygo, S.K., Lukens, J.E.: Quantum superposition of distinct macroscopic states. Nature (Lond.) 406, 43–46 (2000)

    Article  ADS  Google Scholar 

  23. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  24. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2004). arXiv:quant-ph/0312059

    Article  ADS  Google Scholar 

  26. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  27. Stapp, H.P.: The Copenhagen interpretation. Am. J. Phys. 40, 1098–1116 (1972)

    Article  ADS  Google Scholar 

  28. Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–465 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  29. Herbut, F.: Mott’s cloud-chamber theory made explicit and the relative-collapse interpretation of quantum mechanics thus obtained. Int. J. Theor. Phys. 34, 679–700 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996). arXiv:quant-ph/9609002

    Article  MathSciNet  MATH  Google Scholar 

  31. Zeh, H.D.: In: Barrow, J.D., Davies, P.C.W., Harper, C.J. (eds.) Science and Ultimate Reality. Cambridge University Press, Cambridge (2004). arXiv:quant-ph/0204088

    Google Scholar 

  32. Zeh, H.D.: “Quantum teleportation” and other quantum misnomers, web essay http://www.rzuser.uni-heidelberg.de/~as3/Teleport.html

  33. D’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn. Benjamin, Reading (1976), Sect. 7.2

    Google Scholar 

  34. Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51, 549–565 (1998). arXiv:quant-ph/9609013

    Article  ADS  Google Scholar 

  35. Seevinck, M.: The quantum world is not built up from correlations. Found. Phys. 36, 1573–1586 (2006). arXiv:quant-ph/0508175v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mohrhoff, U.: Restoration of interference and the fallacy of delayed choice: Concerning an experiment proposed by Englert, Scully, and Walther. Am. J. Phys. 64, 1468–1475 (1996)

    Article  ADS  Google Scholar 

  37. Englert, B.-G., Scully, M.O., Walther, H.: The duality in matter and light. Sci. Am. 271, 86–92 (1994)

    Article  Google Scholar 

  38. Mohrhoff, U.: Objectivity, retrocausation, and the experiment of Englert, Scully, and Walther. Am. J. Phys. 67, 330–335 (1999)

    Article  ADS  Google Scholar 

  39. Mohrhoff, U.: What quantum mechanics is trying to tell us. Am. J. Phys. 68, 728–745 (2000). arXiv:quant-ph/9903051

    Article  ADS  MathSciNet  Google Scholar 

  40. Mohrhoff, U.: The Pondicherry interpretation of quantum mechanics. Pramana 64, 171–185 (2005). arXiv:quant-ph/0412182

    Article  ADS  Google Scholar 

  41. Van Kampen, N.G.: Ten theorems about quantum mechanical measurements. Physica A 153, 97–113 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. Herbut, F.: Quantum interference viewed in the framework of probability theory. Am. J. Phys. 60, 146–150 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Herbut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbut, F. On EPR-Type Entanglement in the Experiments of Scully et al. I. The Micromaser Case and Delayed-Choice Quantum Erasure. Found Phys 38, 1046–1064 (2008). https://doi.org/10.1007/s10701-008-9251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9251-z

Keywords

Navigation