Skip to main content
Log in

Effect of Elevated Temperatures on Mechanical Performance of Normal and Lightweight Concretes Reinforced with Carbon Nanotubes

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

An experimental program was developed to evaluate the effect of multi-walled carbon nanotubes (MWCNTs) inclusion on elevated temperature properties of normal weight concrete (NWC) and lightweight concrete (LWC). The mechanical performance was assessed by conducting material property tests namely compressive strength (f’c,T), tensile strength (f’t,T), mass loss (MT), elastic modulus (ET), compressive toughness (Tc) and stress–strain response under unstressed and residual conditions in the range of 23°C to 800°C. The mechanical properties were measured by heating 100 × 200 mm cylindrical specimens to 200°C, 400°C, 600°C and 800°C at a heating rate of 5°C/min. Results show that the inclusion MWCNTs in cementitious matrices enhanced the fire endurance. The relative retention of mechanical strength and mass of concretes modified with MWCNTs was higher. The stress–strain response of specimens modified with MWCNTs was more ductile. Microstructural study of cyrofractured samples evidenced the homogenous dispersion of nano-reinforcements in host matrix. Furthermore, the data obtained from high temperature material property tests was utilized to develop mathematical relationships for expressing mechanical properties of modified mixes as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Sancak E, Dursun Sari Y, Simsek O (2008) Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cem Concr Compos 30:715–721. https://doi.org/10.1016/j.cemconcomp.2008.01.004

    Article  Google Scholar 

  2. Kodur VKR, Khaliq W (2011) Effect of temperature on thermal properties of different types of high-strength concrete. J Mater Civ Eng 23:793–801. https://doi.org/10.1061/(asce)mt.1943-5533.0000225

    Article  Google Scholar 

  3. Hulin T, Maluk C, Bisby L, Hodicky K, Schmidt JW, Stang H (2016) Experimental studies on the fire behaviour of high performance concrete thin plates. Fire Technol 52:683–705. https://doi.org/10.1007/s10694-015-0486-x

    Article  Google Scholar 

  4. Xiao J, Xie Q, Li Z, Wang W (2017) Fire resistance and post-fire seismic behavior of high strength concrete shear walls. Fire Technol 53:65–86. https://doi.org/10.1007/s10694-016-0582-6

    Article  Google Scholar 

  5. Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res 40:1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015

    Article  Google Scholar 

  6. Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Compos 34:1104–1113. https://doi.org/10.1016/j.cemconcomp.2012.07.008

    Article  Google Scholar 

  7. Keriene J, Kligys M, Laukaitis A, Yakovlev G, Špokauskas A, Aleknevičius M (2013) The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Constr Build Mater 49:527–535. https://doi.org/10.1016/j.conbuildmat.2013.08.044

    Article  Google Scholar 

  8. Shah SP, Hou P, Konsta-Gdoutos MS (2016) Nano-modification of cementitious material: toward a stronger and durable concrete. J Sustain Cem Mater 5:1–22. https://doi.org/10.1080/21650373.2015.1086286

    Google Scholar 

  9. Irshidat MR, Al-Saleh MH (2016) Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets. Constr Build Mater 105:511–518. https://doi.org/10.1016/j.conbuildmat.2015.12.183

    Article  Google Scholar 

  10. Al-Saud T, Hussain M, Batyanovskii E, Zhdanok S, Krauklis A, Samtsou P (2011) Influence of carbon nanomaterials on the properties of cement and concrete. J Eng Phys Thermophys 84:546–553. https://doi.org/10.1007/s10891-011-0503-y

    Article  Google Scholar 

  11. Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 32:110–115. https://doi.org/10.1016/j.cemconcomp.2009.10.007

    Article  Google Scholar 

  12. Wang B, Han Y, Liu S (2013) Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr Build Mater 46:8–12. https://doi.org/10.1016/j.conbuildmat.2013.04.014

    Article  Google Scholar 

  13. Eftekhari M, Hatefi Ardakani S, Mohammadi S (2014) An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete. Theor Appl Fract Mech 72:64–75. https://doi.org/10.1016/j.tafmec.2014.06.005

    Article  Google Scholar 

  14. Shah SP, Konsta-Gdoutos MS, Metaxa ZS, Mondal P (2009) Nanoscale Modification of Cementitious Materials. Nanotechnol Constr 3:125–130. https://doi.org/10.1007/978-3-642-00980-8_16

    Article  Google Scholar 

  15. Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater. https://doi.org/10.1155/2013/710175

    Google Scholar 

  16. YazdanbakhshA, Grasley Z, Tyson B, Abu Al-Rub R (2012) Challenges and benefits of utilizing carbon nanofilaments in cementitious materials. J Nanomater. https://doi.org/10.1155/2012/371927

    Google Scholar 

  17. Sbia LA, Peyvandi A, Soroushian P, Balachandra AM (2014) Optimization of ultra-high-performance concrete with nano- and micro-scale reinforcement. Cogent Eng 1:1–11. https://doi.org/10.1080/23311916.2014.990673

    Article  Google Scholar 

  18. Gillani SS-H, Khitab A, Ahmad S, Khushnood RA, Ferro GA, Saleem Kazmi, SM, Qureshi LA, Restuccia L (2017) Improving the mechanical performance of cement composites by carbon nanotubes addition. Procedia Struct Integr 3:11–17. https://doi.org/10.1016/j.prostr.2017.04.003

    Article  Google Scholar 

  19. Khushnood RA, Ahmad S, Restuccia L, Spoto C, Jagdale P, Tulliani JM, Ferro GA (2016) Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front Struct Civ Eng 10:209–213. https://doi.org/10.1007/s11709-016-0330-5

    Article  Google Scholar 

  20. Nadeem A, Memon SA, Lo TY (2013) Qualitative and quantitative analysis and identification of flaws in the microstructure of fly ash and metakaolin blended high performance concrete after exposure to elevated temperatures. Constr Build Mater 38:731–741. http://dx.doi.org/10.1016/j.conbuildmat.2012.09.062

    Article  Google Scholar 

  21. Nadeem A, Memon SA, Lo TY (2013) Evaluation of fly ash and Metakaolin concrete at elevated temperatures through stiffness damage test. Constr Build Mater 38:1058–1065. https://doi.org/10.1016/j.conbuildmat.2012.09.034

    Article  Google Scholar 

  22. Laneyrie C, Beaucour AL, Green MF, Hebert RL, Ledesert B, Noumowe A (2016) Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Constr Build Mater 111:368–378. https://doi.org/10.1016/j.conbuildmat.2016.02.056

    Article  Google Scholar 

  23. Savva A, Manita P, Sideris KK (2005) Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates. Cem Concr Compos 27:239–248. https://doi.org/10.1016/j.cemconcomp.2004.02.013

    Article  Google Scholar 

  24. Rashad AM, Sadek DM, Hassan HA (2016) An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod 112:1086–1096. https://doi.org/10.1016/j.jclepro.2015.07.127

    Article  Google Scholar 

  25. Fares H, Toutanji H, Pierce K, Noumowé A (2015) Lightweight self-consolidating concrete exposed to elevated temperatures. J Mater Civ Eng 27:04015039. https://doi.org/10.1061/(asce)mt.1943-5533.0001285

    Article  Google Scholar 

  26. Khaliq W, Khan HA (2015) High temperature material properties of calcium aluminate cement concrete. Constr Build Mater 94:475–487. https://doi.org/10.1016/j.conbuildmat.2015.07.023

    Article  Google Scholar 

  27. Othuman MA, Wang YC (2011) Elevated-temperature thermal properties of lightweight foamed concrete. Constr Build Mater 25:705–716. https://doi.org/10.1016/j.conbuildmat.2010.07.016

    Article  Google Scholar 

  28. Othuman Mydin MA, Wang YC (2012) Thermal and mechanical properties of lightweight foamed concrete at elevated temperatures. Mag Concr Res 64:213–224. https://doi.org/10.1680/macr.10.00162

    Article  Google Scholar 

  29. Tanyildizi H, Coskun A (2008) The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Constr Build Mater 22:2269–2275. https://doi.org/10.1016/j.conbuildmat.2007.07.033

    Article  Google Scholar 

  30. Go CG, Tang JR, Chi JH, Chen CT, Huang YL (2012) Fire-resistance property of reinforced lightweight aggregate concrete wall. Constr Build Mater 30:725–733. https://doi.org/10.1016/j.conbuildmat.2011.12.081

    Article  Google Scholar 

  31. Chandra S, Berntsson L (2002) Lightweight aggregate concrete

  32. Bodnárová L, Hela R, Hubertová M, Nováková I (2014) Behaviour of lightweight expanded clay aggregate concrete exposed to high temperatures. 8:1151–1154

  33. Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon NY 43:1239–1245. https://doi.org/10.1016/j.carbon.2004.12.017

    Article  Google Scholar 

  34. Li GY, Wang PM, Zhao X (2007) Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos 29:377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011

    Article  Google Scholar 

  35. Wansom S, Kidner NJ, Woo LY, Mason TO (2006) AC-impedance response of multi-walled carbon nanotube/cement composites. Cem Concr Compos 28:509–519. https://doi.org/10.1016/j.cemconcomp.2006.01.014

    Article  Google Scholar 

  36. Cwirzen A, Habermehl-Cwirzen K, Penttala V (2008) Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cem Res 20:65–73. https://doi.org/10.1680/adcr.2008.20.2.65

    Article  Google Scholar 

  37. ASTM International (2011) ASTM C 150 standard specification for portland cement Test 04:1–7. https://doi.org/10.1002/jbm.b.31853

    Google Scholar 

  38. Metaxa ZS, Seo JWT, Konsta-Gdoutos MS, Hersam MC, Shah SP (2012) Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem Concr Compos 34:612–617. https://doi.org/10.1016/j.cemconcomp.2012.01.006

    Article  Google Scholar 

  39. Sáez De Ibarra Y, Gaitero JJ, Erkizia E, Campillo I (2006) Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi Appl Mater Sci 203:1076–1081. https://doi.org/10.1002/pssa.200566166

    Article  Google Scholar 

  40. Wang B, Han Y, Song K, Zhang T (2012) The use of anionic gum arabic as a dispersant for multi-walled carbon nanotubes in an aqueous solution. J Nanosci Nanotechnol 12:4664–4669. https://doi.org/10.1166/jnn.2012.6425

    Article  Google Scholar 

  41. Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328:421–428. https://doi.org/10.1016/j.jcis.2008.09.015

    Article  Google Scholar 

  42. ASTM C39 (2015) ASTM C39: standard test method for compressive strength of cylindrical concrete specimens ASTM Int 1–7. https://doi.org/10.1520/c0039

  43. RILEM TC 129-MHT (2000) Test methods for mechanical properties of concrete at high temperatures, part 4—tensile strength for service and accident conditions. Mater Struct 33:219–223

    Article  Google Scholar 

  44. RRILEM TC 129-MHT (1995) Test methods for mechanical properties of concrete at high temperatures—compressive strength for service and accident conditions. Mater Struct 28(3):410–414

    Google Scholar 

  45. Phan L (1996) Fire performance of high-strength concrete: a report of the state-of-the-art, US Dep. Commer. Technol. Adm. Natl. Inst. Stand. Technol. Off. Appl. Econ. Build. Fire Res. Lab. 118

  46. Nadeem A, Memon SA, Lo TY (2013) Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and Metakaolin mortar at elevated temperatures. Constr Build Mater 38:338–347. https://doi.org/10.1016/j.conbuildmat.2012.08.042

    Article  Google Scholar 

  47. Chan YN, Peng GF, Anson M (1999) Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cem Concr Compos 21:23–27. https://doi.org/10.1016/s0958-9465(98)00034-1

    Article  Google Scholar 

  48. Mohamedbhai (1986) Effect of exposure time and rate of heating and cooling on residual strength of heated concrete 151–158

  49. Khaliq W, Kodur V (2011) Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem Concr Res 41:1112–1122. https://doi.org/10.1016/j.cemconres.2011.06.012

    Article  Google Scholar 

  50. ASTM C1723 (2015) Examination of hardened concrete using scanning electron microscopy. ASTM Int 1–9. https://doi.org/10.1520/c1723-10

  51. Castillo C, Durrani AJ (1990) Effect of transient high temperature on high-strength concrete. ACI Mater J 87:47–53

    Google Scholar 

  52. Abrams MS (1971) Compressive strength of concrete at temperatures to 1600°F. Spec Publ 25:33–58. https://doi.org/10.14359/17331

    Google Scholar 

  53. Kowalski R (2010) Mechanical properties of concrete subjected to high temperature. Archit Civ Eng Environ 61–70

  54. Abramowicz M, Kowalski R (2007) Residual mechanical material properties for the reassessment of reinforced concrete structures after fire. In: 9th international conference mod. build. mater. struct. tech. pp 1147–1151

  55. Abramowicz M, Kowalski R (2005) The influence of short time water cooling on the mechanical properties of concrete heated up to high temperature. J Civ Eng Manag 11:85–90. https://doi.org/10.1080/13923730.2005.9636336

    Article  Google Scholar 

  56. Bazant Z, Kaplan M (1996) Concrete at high temperatures: material properties and mathematical models

  57. Tanyildizi H, Coskun A (2008) Performance of lightweight concrete with silica fume after high temperature. Constr Build Mater 22:2124–2129. https://doi.org/10.1016/j.conbuildmat.2007.07.017

    Article  Google Scholar 

  58. ASTM C496/C496 M (2011) Standard test method for splitting tensile strength of cylindrical concrete specimens. Am Soc Test Mater 1–5. https://doi.org/10.1520/c0496

  59. Bonnaud PA, Ji Q, Van Vliet KJ (2013) Effects of elevated temperature on the structure and properties of calcium–silicate–hydrate gels: the role of confined water. Soft Matter 9:6418. https://doi.org/10.1039/c3sm50975c

    Article  Google Scholar 

  60. Lie TT, Kodur VKR (1996) Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures. Can J Civ Eng 23:511–517. https://doi.org/10.1139/l96-055

    Article  Google Scholar 

  61. Khaliq W, Kodur V (2011) Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem Concr Res http://www.sciencedirect.com/science/article/pii/S0008884611001864. Accessed 1 May 2017

  62. Khaliq W (2012) Performance characterization of high performance concretes under fire conditions. Michigan State University

  63. Cui HZ, Lo TY, Memon SA, Xu W (2012) Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete. Constr Build Mater 35:149–158. https://doi.org/10.1016/j.conbuildmat.2012.02.053

    Article  Google Scholar 

  64. Andiç-Çakir Ö, Hizal S (2012) Influence of elevated temperatures on the mechanical properties and microstructure of self consolidating lightweight aggregate concrete. Constr Build Mater 34:575–583. https://doi.org/10.1016/j.conbuildmat.2012.02.088

    Article  Google Scholar 

  65. Marar K, Eren Ö, Çelik T (2001) Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater Lett 47:297–304. https://doi.org/10.1016/s0167-577x(00)00253-6

    Article  Google Scholar 

  66. Marara K, Erenb Ö, Yitmena İ (2011) Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC). Mater Res 14:239–247. https://doi.org/10.1590/s1516-14392011005000042

    Article  Google Scholar 

  67. Kodur VKR, Sultan MA (2003) Effect of temperature on thermal properties of high strength concrete 15:101–107. https://doi.org/10.1039/b910216g

  68. Bingöl AF, Gül R (2009) Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater 33:79–88. https://doi.org/10.1002/fam.987

    Article  Google Scholar 

  69. El-Gamal SMA, Hashem FS, Amin MS (2017) Influence of carbon nanotubes, nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Constr Build Mater 146:531–546. https://doi.org/10.1016/j.conbuildmat.2017.04.124

    Article  Google Scholar 

  70. Lie TT (ed.), structural fire protection, American Society of Civil Engineers, New York, 1992. https://doi.org/10.1061/9780872628885

  71. Wackerly D, Mendenhall W, Scheaffer R (2008) Mathematical statistics with applications. https://doi.org/10.1017/cbo9781107415324.004

  72. Minitab (2017). http://www.minitab.com/en-us/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waqas Latif Baloch or Rao Arsalan Khushnood.

Appendix

Appendix

See Figs. 16, 17, 18, 19 and Tables 6, 7, 8.

Figure 16
figure 16

Characterization of MWCNTs (a) Raman spectra. (b) XRD of MWCNTs

Figure 17
figure 17

Test methods for elevated temperature mechanical testing

Figure 18
figure 18

Thermal conductivity of concretes

Figure 19
figure 19

Visual assessment of concrete samples exposed to 800°C: (a) Normal weight concrete. (b) Modified normal weight concrete. (c) Lightweight concrete. (d) Modified lightweight concrete

Table 6 Physical and Chemical Properties of Acacia Gum (AG)
Table 7 Detail on Number of Test Specimens, Temperature Levels and Test Conditions
Table 8 Reduction Factors as a Function of Temperature for Modified Mixes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloch, W.L., Khushnood, R.A., Memon, S.A. et al. Effect of Elevated Temperatures on Mechanical Performance of Normal and Lightweight Concretes Reinforced with Carbon Nanotubes. Fire Technol 54, 1331–1367 (2018). https://doi.org/10.1007/s10694-018-0733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-018-0733-z

Keywords

Navigation