Skip to main content
Log in

Power-efficient ultra wideband LNAs for the world’s largest radio telescope

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

This paper reports two Low Noise Amplifiers (LNA) for Aperture Array system of the international Square Kilometre Array (SKA) project. LNA design for SKA is a step change in traditional LNA design approach for radio astronomy applications as the defining aspects of performance are low noise along with low power consumption and adequate gain. The LNAs are designed, fabricated and characterised for frequency range of 20 −1000 MHz. One LNA has single ended input to single ended output configuration (LNA1) while the other LNA has balanced input to single ended output (LNA2). The S-parameter, noise figure (NF) and large signal response of the LNAs are measured at room temperature. Both LNAs show flat gain of higher than 30 dB over specified frequency range. Average NF values of LNA1 and LNA2 are 0.55 dB and 0.75 dB respectively. Mixed mode S-parameter response based on theoretical analysis of differential configuration is presented. The LNAs have exceptionally low power consumption of less than 25 mW; 20 times lower than the other reported LNAs available for the SKA and also covering complete frequency band with less than 1 dB NF. Therefore implication of these LNAs is a significant step forward as the projected number of LNAs required for the lower frequency band of SKA Aperture Array system is 5,600,000 (Dewdney et al., Proc. IEEE 97(8), 1482–1496, 2009; Faulkner et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dewdney, P., Hall, P., Schilizzi, R., Lazio, T.: The square kilometre array. Proc. IEEE 97(8), 1482–1496 (2009). doi:10.1109/JPROC.2009.2021005, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5136190&isnumber=5165124

    Article  ADS  Google Scholar 

  2. Faulkner, A., Kant, D., Alexander, P., Montebugnoli, S., Van Ardenne, A., Picard, P., Boltoon, R., Rawlings, S., Bregman, J., Torchinsky, S., Van Es, A., bij de Vaate, J.G., Jones, M., Wilkinson, P.: The Aperture Arrays for the SKA: The SKADS white paper (2010)

  3. Hampson, G., Smolders, B., Joseph, A.: One square metre of a million. In: 29th European Microwave Conference, 1999, vol. 1, pp. 111–114 (1999)

  4. Van Ardenne, A.: Concepts of the Square Kilometre Array; Toward the new generation radio telescopes. In: Antennas and Propagation Society International Symposium, IEEE, vol. 1, pp. 158–161 (2000)

  5. Schilizzi, R.T., Alexander, P., Cordes, J.M., Dewdney, P.E., Ekers, R.D., Faulkner, A.J., Gaensler, B.M., Hall, P.J., Jonas, J.L., Kellermann, K.I.: Preliminary Specifications for the SKA, Memo 100

  6. Garrett, M.A., Cordes, J.M., de Boer, D., Jonas, J.L., Rawlings, S., Schilizzi, R.T.: A Concept Design for SKA Phase1 (SKA1), Memo 125 (2010)

  7. Huang, N., Mittra, R., Maaskant, R., Yu, W.: Investigation of the vivaldi array for Square Kilometer Array (SKA) application using the parallelized FDTD code GEMS on the LOFAR blue gene/L supercomputer. In: 2007 IEEE Antennas and Propagation Society International Symposium, pp. 2341–2344 (2007). doi:10.1109/APS.2007.4396001, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4396001&isnumber=4395410

  8. Brown, A.K., Zhang, Y., Kant, D., Bij de Vaate, J.G.: Wideband planar phased arrays for the square kilometre array. In: IEEE International Symposium on Phased Array Systems and Technology (ARRAY), pp. 616–623 (2010). doi:10.1109/ARRAY.2010.5613301, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5613301&isnumber=5613232

  9. Zhang, Y., Brown, A.K.: Bunny ear combline antennas for compact wide-band dual-polarized aperture array. IEEE Trans. Antennas Propag. 59(8), 3071–3075 (2011). doi:10.1109/TAP.2011.2158780, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5613301&isnumber=5613232

  10. Bhaumik, S., Panahi, M., Kettle, D.: Differential LNA considerations for the square kilometer array. In: 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009. ANTEM/URSI (2009)

  11. bij de Vaate, J.G.: An SKA Engineering Overview (2007)

  12. Faulkner, A., Kant, D., Alexander, P., Montebugnoli, S., Van Ardenne, A., Picard, P., Boltoon, R., Rawlings, S., Bregman, J., Torchinsky, S., Van Es, A., bij de Vaate, J.G, Jones, M., Wilkinson, P.: Aperture Arrays for the SKA: The SKADS White Paper (2010)

  13. Bhaumik, S., Roy, M., George, D.: Comparative Study of HEMTs for LNAs in Square Kilometre Array Telescope, IEEE MTT IMS (2011)

  14. Bhaumik, S., George, D.: AA-lo AA-mid LNA Designs, website http://www2.skatelescope.org/indico/getFile.py/access?contribId=81&sessionId=11&resId=0&materialId=0&confId=3 (2011) Accessed 20 July 2011

  15. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley (2005)

  16. Marsh, S.P.: Practical MMIC Design. Artech House (2006)

  17. Collin, R.E.: Foundations for Microwave Engineering, 2nd edn., p.714 (1992)

  18. Avago Technologies, ATF58143 pHEMTs data sheet, website: http://www.avagotech.com/pages/en/rf_microwave/transistors/fet/atf-58143/ (2014)

  19. Bockelman, D.E., Eisenstadt, W.R.: Combined differential and common-mode scattering parameters: theory and Simulation. IEEE Trans. Microwave Theory Tech. 43(7), 1530–1539 (1995). doi:10.1109/22.392911, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392911&isnumber=8938

    Article  ADS  Google Scholar 

  20. Bockelman, D.E., Eisenstadt, W.R.: Pure-mode network analyzer for on wafer measurements of mixed mode S-parameters of differential circuits. IEEE Trans. Microwave Theory Tech. 45, 1071–1077 (1997). doi:10.1109/22.598443, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=598443&isnumber=13109

    Article  ADS  Google Scholar 

  21. Bao, C.: MSc Thesis: Design of Differential Low Noise Amplifiers for the SKA. University of Manchester (Supervisor: Dr. D. George) (2008)

  22. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, 5th edn. Oxford Press Publication (2004)

  23. Bij de Vaate, J.G.: Active Antenna Design and Characterization, Wide Field Science and Technology for the SKA. Limelette, Belgium (2010)

  24. Bhaumik, S., George, D.: Review of Square Kilometre Array LNA Technologies and Topologies, Wide Field Science and Technology for the SKA. Limelette, Belgium (2009)

  25. Ladbrooke, P.H.: MMIC Design: GaAs FETs and HEMTs. Artech House (1943)

  26. TC1-1-13MG2 + Datasheet, Surface Mount RF Transformer, Mini-Circuits [Online], Available: http://217.34.103.131/pdfs/TC1-1-13MG2+.pdf (2013)

  27. Agilent Design Software(ADS), 2009, Update 1

  28. Le, H.P., Shah, K., Singh, J.: A fully-on-chip wideband low noise amplifier for radio telescope applications. In: IEEE International Symposium on Circuits and Systems, 2009, ISCAS 2009, pp.1941–1944 (2009). doi:10.1109/ISCAS.2009.5118169, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5118169&isnumber=5117665

  29. García-Pérez, Ó., Segovia-Vargas, D., García-Muñoz, L.E., Luis Jiménez-Martín, J., Gonzälez-Posadas, V.: Broadband differential low-noise amplifier for active differential arrays. IEEE Trans Microw. Theory Tech. 59(1), 108–115 (2011). doi:10.1109/TMTT.2010.2091199, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5654613&isnumber=5685336

    Article  ADS  Google Scholar 

  30. SGL0363Z LNA, Datasheet, RFMD, website: http://www.rfmd.com/CS/Documents/SGL-0363ZDS.pdf (2014)

  31. SGL0622Z LNA, Datasheet, RFMD, website: http://www.rfmd.com/CS/Documents/SGL0622ZDS.pdf (2014)

  32. ZX60-33LN LNA, Datasheet, Mini-Circuits, website: http://www.minicircuits.com/pdfs/ZX60-33LN+.pdf (2014)

  33. MGA-53543 LNA, Datasheet, Avago Technologies, website: http://www.avagotech.com/pages/en/rf_microwave/amplifiers/low_noise_amplifiers/mga-53543/ (2014)

  34. Deal, S.-E.S., Yamauchi, W.R., Sutton, D.M., Wen-Ben Luo Yaochung Chen Smorchkova, W.E., Heying, I.P., Wojtowicz, B., Siddiqui, M.: Design and analysis of ultra wideband GaN dual-gate HEMT low-noise amplifiers. IEEE Trans Microw. Theory Tech. 57(12), 3270–3277 (2009). doi:10.1109/TMTT.2009.2034416, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5325669&isnumber=5340253

    Article  ADS  Google Scholar 

  35. Law, C.F., James Hwang, C.L.: A 3.110.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC Power. IEEE Microw. Wirel. Components Lett. 17(4), 295–297 (2009). doi:10.1109/LMWC.2007.892984, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4141075&isnumber=4141066

    Google Scholar 

  36. Liao, Y., Tang, Z., Min, H.: A CMOS wide-band low-noise amplifier with balun-based noise-canceling technique. IEEE Asian Solid-State Circuits Conference, 2007 pp. 91–94 (2007). doi:10.1109/ASSCC.2007.4425739, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4425739&isnumber=4425677

    Google Scholar 

  37. Chao, S.-F., Kuo, J.-J., Lin, C.-L., Tsai, M.-D., Wang, H.: A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique. IEEE Microw. Wirel. Components Lett. 18(7), 482–484 (2008). doi:10.1109/LMWC.2008.925099, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4538236&isnumber=4550590

    Article  Google Scholar 

  38. Chen, K.-H., Lu, J.-H., Chen, B.-J., Liu, S.-I.: An ultra-wide-band 0.410 GHz LNA in 0.18um CMOS. IEEE Trans. Circ. Syst. II 54(3), 217–221 (2007). doi:10.1109/TCSII.2006.886880, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4132952&isnumber=4132951

    Article  ADS  MathSciNet  Google Scholar 

  39. Chang, T., Chen, J., Rigge, L.A., Lin, J.: ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging. IEEE Trans. Microw. Theory Tech. 56(8), 1817–1826 (2008). doi:10.1109/TMTT.2008.927301, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4560051&isnumber=4589151

    Article  ADS  Google Scholar 

  40. Lai, Q.-T., Mao, J.-F.: A 0.511 GHz CMOS low noise amplifier using dual-channel shunt technique. IEEE Microw. Wirel. Components Lett. 20(5), 280–282 (2010). doi:10.1109/LMWC.2010.2045592, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5443550&isnumber=5458313

  41. El-Nozahi, M., Helmy, A.A., Sanchez-Sinencio, E., Entesari, K.: A 2-1100 MHz wideband low noise amplifier with 1.43 dB minimum noise figure. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE, pp. 119–122 (2010). doi:10.1109/RFIC.2010.5477274, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5477274&isnumber=5477245

  42. Im, D., Nam, I., Lee, K.: A low power broadband differential low noise amplifier employing noise and im3 distortion cancellation for mobile broadcast receivers. IEEE Microw. Wirel. Components Lett. 20(10), 566–568 (2010). doi:10.1109/LMWC.2010.2061839, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5594753&isnumber=5594751

  43. Yu, Y.-H., Yang, Y.-S., Chen, Y.-J.E.: A compact wideband CMOS low noise amplifier with gain flatness enhancement. IEEE Solid State Circ. 45(3), 502–509 (2010).doi:10.1109/JSSC.2010.2040111, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5419179&isnumber=5419169

  44. Perini, F., Monari, J.: AAlo COTS LNA (Istituto di Radioastronomia INAF Bologna), SKA AA-lo internal report (2011)

Download references

Acknowledgements

The authors acknowledge Preparatory Square Kilometre Array (PrepSKA) program for help with funding and Mr. Neil Roddis for his continuous support throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi, M., Bhaumik, S. & George, D. Power-efficient ultra wideband LNAs for the world’s largest radio telescope. Exp Astron 38, 359–379 (2014). https://doi.org/10.1007/s10686-014-9399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9399-9

Keywords

Navigation