Experimental Astronomy

, Volume 32, Issue 2, pp 101–125 | Cite as

Imaging X-ray Polarimeter for Solar Flares (IXPS)

  • Michael Hosack
  • J. Kevin Black
  • Philip Deines-Jones
  • Brian R. Dennis
  • Joanne E. Hill
  • Keith Jahoda
  • Albert Y. Shih
  • Christian E. Urba
  • A. Gordon Emslie
Original Article


We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IXPS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20–50 keV energy range during an M- or X-class flare, and will provide imaging information at the ∼10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.


Solar flare X-ray polarimetry Particle tracking GEM TPC 



This work was supported by NASA through the Heliophysics Low Cost Access to Space program of the Research Opportunities in Space and Earth Sciences (ROSES). Several individuals have provided technical assistance or advice for this project. We thank Bob Baker and Ken Simms for custom electronics. Michael Dion assisted especially with the cleaning and stretching of GEMs. Jeff Martoff provided useful advice and ideas particularly concerning detector gas. Zach Prieskorn’s work with a similar detector provided a useful baseline for testing and troubleshooting various problems. Phil Kaaret suggested polarization through Compton scattering and provided references. We thank Toru Tamagawa for help communicating with Japanese suppliers. Finally, we thank Zhong Zhong for assistance concerning the use of synchrotron radiation for 20–50 keV polarized X-rays.


  1. 1.
    Anderhub, H., Devereux, M.J., Seiler, P.G.: On a new method for testing and calibrating ionizing particle detectors. Nucl. Instrum. Methods A 166, 581–582 (1979)CrossRefGoogle Scholar
  2. 2.
    Bai, T., Ramaty, R.: Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 219, 705 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G. (eds.): X-ray Polarimetry: A New Window in Astrophysics. Cambridge Contemporary Astrophysics. Cambridge University Press (2010)Google Scholar
  4. 4.
    Bellazzini, R., et al.: Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. Nucl. Instrum. Methods A 535, 477 (2004)ADSGoogle Scholar
  5. 5.
    Black, J.K., et al.: The imaging X-ray detector for Lobster-ISS. Nucl. Instrum. Methods A 513, 123 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Black, J.K., et al.: X-ray polarimetry with an active-matrix pixel proportional counter. Nucl. Instrum. Methods A 513, 639 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Black, J.K., et al.: X-ray polarimetry with a micropattern TPC. Nucl. Instrum. Methods A 581, 755 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Blum, W., Rolandi, L.: Particle Detection with Drift Chambers. Springer (1993)Google Scholar
  9. 9.
    Boggs, S.E., Coburn, W., Kalemci, E.: Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 638, 1129 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Bogomolov, A.V., et al.: Polarization of hard X-rays in October-November, 2003 solar flares observed onboard CORONAS-F satellite. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, no. 223 in IAU Symposium, p. 447. Cambridge University Press (2004)Google Scholar
  11. 11.
    Brown, J.C.: The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares. Sol. Phys. 26, 441 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    Brown, J.C., McClymont, A.N., McLean, I.S.: Interpretation of solar hard X-ray burst polarisation measurements. Nature 247, 448 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    Dean, A.J., et al.: Polarized gamma-ray emission from the Crab. Science 321, 1183 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Emslie, A.G., Bradsher, H.L., McConnell, M.L.: Hard X-ray polarization from non-vertical solar flare loops. Astrophys. J. 674, 570–575 (2008). doi: 10.1086/524983 ADSCrossRefGoogle Scholar
  15. 15.
    Emslie, A.G., Brown, J.C.: The polarization and directivity of solar-flare hard X-ray bremsstrahlung from a thermal source. Astrophys. J. 237, 1015–1023 (1980). doi: 10.1086/157947 ADSCrossRefGoogle Scholar
  16. 16.
    Emslie, A.G., Vlahos, L.: Radiation signatures from a locally energized flaring loop. Astrophys. J. 242, 359–373 (1980). doi: 10.1086/158469 ADSCrossRefGoogle Scholar
  17. 17.
    Emslie, A.G., et al.: RHESSI hard X-ray imaging spectroscopy of the large gamma-ray flare of 2002 July 23. Astrophys. J. Lett. 595, L107–L110 (2003). doi: 10.1086/378931 ADSCrossRefGoogle Scholar
  18. 18.
    Forot, M., Laurent, P., Grenier, I.A., Gouiffès, C., Lebrun, F.: Polarization of the Crab Pulsar and Nebula as observed by the INTEGRAL/IBIS telescope. Astrophys. J. Lett. 688, L29–L32 (2008). doi: 10.1086/593974 ADSCrossRefGoogle Scholar
  19. 19.
    Gluckstern, R.L., Hull Jr., M.H.: Polarization dependence of the integrated bremsstrahlung cross section. Phys. Rev. 90, 1030–1035 (1953)ADSMATHCrossRefGoogle Scholar
  20. 20.
    Haug, E.: Polarization of hard X-rays from solar flares. Sol. Phys. 25, 425–434 (1972). doi: 10.1007/BF00192340 ADSCrossRefGoogle Scholar
  21. 21.
    Hénoux, J.C.: Anisotropy and polarization of solar X-ray bursts. Sol. Phys. 42, 219–233 (1975). doi: 10.1007/BF00153298 ADSCrossRefGoogle Scholar
  22. 22.
    Hill, J.E., et al.: A burst chasing X-ray polarimeter. In: Siegmund, O.H.W. (ed.) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 6686, p. 66860Y (2007)Google Scholar
  23. 23.
    Holman, G.D., et al.: Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97–L101 (2003). doi: 10.1086/378488 ADSCrossRefGoogle Scholar
  24. 24.
    Joy, D.C.: Monte Carlo Modeling for Electron Microscopy and Microanalysis. Oxford Series in Optical and Imaging Sciences. Oxford University Press, Inc. (1995)Google Scholar
  25. 25.
    Kontar, E.P., Brown, J.C.: Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft. Astrophys. J. Lett. 653, L149–L152 (2006). doi: 10.1086/510586 ADSCrossRefGoogle Scholar
  26. 26.
    Kontar, E.P., Jeffrey, N.L.S.: Positions and sizes of X-ray solar flare sources. Astron. Astrophys. 513, L2+ (2010). doi: 10.1051/0004-6361/201014066
  27. 27.
    Langer, S.H., Petrosian, V.: Impulsive solar X-ray bursts. III—polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere. Astrophys. J. Lett. 215, 666–676 (1977). doi: 10.1086/155400 CrossRefGoogle Scholar
  28. 28.
    Leach, J., Petrosian, V.: The impulsive phase of solar flares. II—characteristics of the hard X-rays. Astrophys. J. 269, 715–727 (1983). doi: 10.1086/161081 ADSCrossRefGoogle Scholar
  29. 29.
    Leach, J., Petrosian, V., Emslie, A.G.: The interpretation of hard X-ray polarization measurements in solar flares. Sol. Phys. 96, 331–337 (1985). doi: 10.1007/BF00149688 ADSCrossRefGoogle Scholar
  30. 30.
    Lin, R.P., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 210, 3–32 (2002). doi: 10.1023/A:1022428818870 ADSCrossRefGoogle Scholar
  31. 31.
    Lin, R.P., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69–L76 (2003). doi: 10.1086/378932 ADSCrossRefGoogle Scholar
  32. 32.
    Martoff, C., Ayad, R., Katz-Hyman, M., Bonvicini, G., Schreiner, A.: Negative ion drift and diffusion in a TPC near 1 bar. Nucl. Instrum. Methods A 555(1–2), 55–58 (2005). doi: 10.1016/j.nima.2005.08.103 ADSCrossRefGoogle Scholar
  33. 33.
    McConnell, M.L., et al.: RHESSI as a hard X-ray polarimeter. Sol. Phys. 210, 125–142 (2002). doi: 10.1023/A:1022413708738 ADSCrossRefGoogle Scholar
  34. 34.
    McConnell, M.L., et al.: RHESSI solar flare polarization measurements in the 20–100 keV energy range. In: American Astronomical Society Meeting 210, #93.01. Bulletin of the American Astronomical Society, vol. 38, p. 211 (2007)Google Scholar
  35. 35.
    McConnell, M.L., et al.: GRAPE: a balloon-borne gamma-ray polarimeter. In: Siegmund, O.H. (ed.) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVI. Soc. Photo-Opt. Instrum. Eng. (SPIE) Conference Series, vol. 7435, p. 74350J (2009). doi: 10.1117/12.826407
  36. 36.
    Miyamoto, J., et al.: GEM operation in negative ion drift gas mixtures. Nucl. Instrum. Methods A 526(3), 409–412 (2004). doi: 10.1016/j.nima.2004.02.018 ADSCrossRefGoogle Scholar
  37. 37.
    Mizuno, T., et al.: Geant4 based cosmic-ray background simulator for balloon experiments. In: Nuclear Science Symposium Conference Record, 2001 IEEE, vol. 1, pp. 442–446 (2001)Google Scholar
  38. 38.
    Murphy, R.J., et al.: Physical implications of RHESSI neutron-capture line measurements. Astrophys. J. Lett. 595, L93–L96 (2003). doi: 10.1086/378175 ADSCrossRefGoogle Scholar
  39. 39.
    Novick, R., et al.: Detection of X-ray polarization of the Crab Nebula. Astrophys. J. Lett. 174, L1+ (1972). doi: 10.1086/180938
  40. 40.
    Ohnuki, T., Snowden-Ifft, D.P., Martoff, C.J.: Measurement of carbon disulfide anion diffusion in a TPC. Nucl. Instrum. Methods A 463(1–2), 142–148 (2001). doi: 10.1016/S0168-9002(01)00222-4 ADSCrossRefGoogle Scholar
  41. 41.
    Pacciani, L., et al.: Sensitivity of a photoelectric X-ray polarimeter for astronomy: the impact of the gas mixture and pressure. In: Fineschi, S. (ed.) Polarimetry in Astronomy. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 4843, pp. 394–405 (2003). doi: 10.1117/12.459275
  42. 42.
    Sakurai, H., Noma, M., Niizeki, H.: A hard X-ray polarimeter utilizing Compton scattering. In: EUV Optics for Astronomy, Microscopy, Polarimetry, and Projection Lithography. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1343, pp. 512–518 (1990)Google Scholar
  43. 43.
    Salvat, F., Jablonski, A.: NIST Standard Reference Database 64—NIST Electron Elastic-Scattering Cross-Section Database Version 3.1. National Institue of Standards and Technology (NIST) (2003). Accessed 18 Oct 2010
  44. 44.
    Shih, A.Y., et al.: The Gamma-Ray Imager/Polarimeter For Solar Flares (GRIPS). In: AAS/Solar Physics Division Meeting 40, #18.10. Bulletin of the American Astronomical Society, vol. 41, p. 846 (2009)Google Scholar
  45. 45.
    Shvyd’ko, Y.V., et al.: High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys. 6, 196–199 (2010). doi: 10.1038/NPHYS1506 CrossRefGoogle Scholar
  46. 46.
    Soffitta, P., et al.: Proportional counters for the Stellar X-Ray Polarimeter with a wedge and strip cathode pattern readout system. Nucl. Instrum. Methods A 414, 218–232 (1998). doi: 10.1016/S0168-9002(98)00572-5 ADSCrossRefGoogle Scholar
  47. 47.
    Soffitta, P., et al.: A set of X-ray polarimeters for the New Hard X-ray imaging and polarimetric mission. In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instumentation 2010: Ultraviolet to Gamma Ray. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 7732, p. 77321A (2010). doi: 10.1117/12.856434
  48. 48.
    Suarez-Garcia, E., et al.: X-ray polarization of solar flares measured with RHESSI. Sol. Phys. 239, 149–172 (2006). doi: 10.1007/s11207-006-0268-1 ADSCrossRefGoogle Scholar
  49. 49.
    Sui, L., Holman, G.D., Dennis, B.R.: Determination of low-energy cutoffs and total energy of nonthermal electrons in a solar flare on 2002 April 15. Astrophys. J. 626, 1102–1109 (2005). doi: 10.1086/430086 ADSCrossRefGoogle Scholar
  50. 50.
    Swank, J., Kallman, T., Jahoda, K.: Gravity and Extreme Magnetism SMEX. In: 37th COSPAR Scientific Assembly. COSPAR, Plenary Meeting, vol. 37, p. 3102 (2008)Google Scholar
  51. 51.
    Tindo, I.P., et al.: On the polarization of the emission of X-ray solar flares. Sol. Phys. 14, 204–207 (1970). doi: 10.1007/BF00240179 ADSCrossRefGoogle Scholar
  52. 52.
    Tindo, I.P., et al.: New measurements of the polarization of X-ray solar flares. Sol. Phys. 24, 429–433 (1972). doi: 10.1007/BF00153385 ADSCrossRefGoogle Scholar
  53. 53.
    Tindo, I.P., et al.: Preliminary interpretation of the polarization measurements performed on ‘Intercosmos-4’ during three X-ray solar flares. Sol. Phys. 27, 426–435 (1972). doi: 10.1007/BF00153113 ADSCrossRefGoogle Scholar
  54. 54.
    Tindo, I.P., et al.: Further polarization measurements of the solar flare X-ray emission. Sol. Phys. 32, 469–475 (1973). doi: 10.1007/BF00154959 ADSCrossRefGoogle Scholar
  55. 55.
    Tramiel, L.J., Novick, R., Chanan, G.A.: Polarization evidence for the isotropy of electrons responsible for the production of 5-20 keV X-rays in solar flares. Astrophys. J. 280, 440–447 (1984). doi: 10.1086/162010 ADSCrossRefGoogle Scholar
  56. 56.
    Weisskopf, M.C., Elsner, R.F., O’Dell, S.L.: On understanding the figures of merit for detection and measurement of X-ray polarization. In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instumentation 2010: Ultraviolet to Gamma Ray. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 7732, p. 77320E (2010). doi: 10.1117/12.857357
  57. 57.
    Weisskopf, M.C., et al.: Measurement of the X-ray polarization of the Crab Nebula. Astrophys. J. Lett. 208, L125–L128 (1976). doi: 10.1086/182247 ADSCrossRefGoogle Scholar
  58. 58.
    Weisskopf, M.C., et al.: A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. Lett. 220, L117–L121 (1978). doi: 10.1086/182648 ADSCrossRefGoogle Scholar
  59. 59.
    Weisskopf, M.C., et al.: On calibrations using the Crab Nebula and models of the nebular X-ray emission. Astrophys. J. 713, 912–919 (2010). doi: 10.1088/0004-637X/713/2/912 ADSCrossRefGoogle Scholar
  60. 60.
    Zastawny, A.: Standardization of gas amplification description in proportional counters. Nucl. Instrum. Methods A 385, 239–242 (1997)ADSCrossRefGoogle Scholar
  61. 61.
    Zhitnik, I.A., et al.: Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite. Sol. Syst. Res. 40, 93–103 (2006). doi: 10.1134/S003809460602002X ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Hosack
    • 1
    • 2
  • J. Kevin Black
    • 3
  • Philip Deines-Jones
    • 4
  • Brian R. Dennis
    • 1
  • Joanne E. Hill
    • 4
    • 5
  • Keith Jahoda
    • 4
  • Albert Y. Shih
    • 1
  • Christian E. Urba
    • 5
  • A. Gordon Emslie
    • 6
  1. 1.Code 671NASA’s Goddard Space Flight CenterGreenbeltUSA
  2. 2.ADNET Systems, Inc.RockvilleUSA
  3. 3.Rock Creek ScientificSilver SpringUSA
  4. 4.Code 662NASA’s Goddard Space Flight CenterGreenbeltUSA
  5. 5.CRESST/Universities Space Research AssociationColumbiaUSA
  6. 6.Department of Physics & AstronomyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations