Skip to main content

Advertisement

Log in

Imaging X-ray Polarimeter for Solar Flares (IXPS)

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IXPS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20–50 keV energy range during an M- or X-class flare, and will provide imaging information at the ∼10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. GEMs and GEMS are distinct acronyms. GEMs (Gas Electron Multipliers) are detector elements; GEMS (Gravity and Extreme Magnetism SMEX) is a NASA Explorer mission [50].

  2. For neon, the K-edge is 0.87 keV . Thus the photoelectron energy is reduced from the 6.4 keV X-ray energy by this amount in the neon-based mixture. For the sake of simplicity, we neglect the K-edges of the other elements in this comparison.

  3. 0.1 mCi at 22 keV should have comparable detection rate to 1 mCi at 60 keV.

References

  1. Anderhub, H., Devereux, M.J., Seiler, P.G.: On a new method for testing and calibrating ionizing particle detectors. Nucl. Instrum. Methods A 166, 581–582 (1979)

    Article  Google Scholar 

  2. Bai, T., Ramaty, R.: Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 219, 705 (1978)

    Article  ADS  Google Scholar 

  3. Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G. (eds.): X-ray Polarimetry: A New Window in Astrophysics. Cambridge Contemporary Astrophysics. Cambridge University Press (2010)

  4. Bellazzini, R., et al.: Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. Nucl. Instrum. Methods A 535, 477 (2004)

    ADS  Google Scholar 

  5. Black, J.K., et al.: The imaging X-ray detector for Lobster-ISS. Nucl. Instrum. Methods A 513, 123 (2003)

    Article  ADS  Google Scholar 

  6. Black, J.K., et al.: X-ray polarimetry with an active-matrix pixel proportional counter. Nucl. Instrum. Methods A 513, 639 (2003)

    Article  ADS  Google Scholar 

  7. Black, J.K., et al.: X-ray polarimetry with a micropattern TPC. Nucl. Instrum. Methods A 581, 755 (2007)

    Article  ADS  Google Scholar 

  8. Blum, W., Rolandi, L.: Particle Detection with Drift Chambers. Springer (1993)

  9. Boggs, S.E., Coburn, W., Kalemci, E.: Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 638, 1129 (2006)

    Article  ADS  Google Scholar 

  10. Bogomolov, A.V., et al.: Polarization of hard X-rays in October-November, 2003 solar flares observed onboard CORONAS-F satellite. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, no. 223 in IAU Symposium, p. 447. Cambridge University Press (2004)

  11. Brown, J.C.: The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares. Sol. Phys. 26, 441 (1972)

    Article  ADS  Google Scholar 

  12. Brown, J.C., McClymont, A.N., McLean, I.S.: Interpretation of solar hard X-ray burst polarisation measurements. Nature 247, 448 (1974)

    Article  ADS  Google Scholar 

  13. Dean, A.J., et al.: Polarized gamma-ray emission from the Crab. Science 321, 1183 (2008)

    Article  ADS  Google Scholar 

  14. Emslie, A.G., Bradsher, H.L., McConnell, M.L.: Hard X-ray polarization from non-vertical solar flare loops. Astrophys. J. 674, 570–575 (2008). doi:10.1086/524983

    Article  ADS  Google Scholar 

  15. Emslie, A.G., Brown, J.C.: The polarization and directivity of solar-flare hard X-ray bremsstrahlung from a thermal source. Astrophys. J. 237, 1015–1023 (1980). doi:10.1086/157947

    Article  ADS  Google Scholar 

  16. Emslie, A.G., Vlahos, L.: Radiation signatures from a locally energized flaring loop. Astrophys. J. 242, 359–373 (1980). doi:10.1086/158469

    Article  ADS  Google Scholar 

  17. Emslie, A.G., et al.: RHESSI hard X-ray imaging spectroscopy of the large gamma-ray flare of 2002 July 23. Astrophys. J. Lett. 595, L107–L110 (2003). doi:10.1086/378931

    Article  ADS  Google Scholar 

  18. Forot, M., Laurent, P., Grenier, I.A., Gouiffès, C., Lebrun, F.: Polarization of the Crab Pulsar and Nebula as observed by the INTEGRAL/IBIS telescope. Astrophys. J. Lett. 688, L29–L32 (2008). doi:10.1086/593974

    Article  ADS  Google Scholar 

  19. Gluckstern, R.L., Hull Jr., M.H.: Polarization dependence of the integrated bremsstrahlung cross section. Phys. Rev. 90, 1030–1035 (1953)

    Article  ADS  MATH  Google Scholar 

  20. Haug, E.: Polarization of hard X-rays from solar flares. Sol. Phys. 25, 425–434 (1972). doi:10.1007/BF00192340

    Article  ADS  Google Scholar 

  21. Hénoux, J.C.: Anisotropy and polarization of solar X-ray bursts. Sol. Phys. 42, 219–233 (1975). doi:10.1007/BF00153298

    Article  ADS  Google Scholar 

  22. Hill, J.E., et al.: A burst chasing X-ray polarimeter. In: Siegmund, O.H.W. (ed.) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 6686, p. 66860Y (2007)

  23. Holman, G.D., et al.: Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. Lett. 595, L97–L101 (2003). doi:10.1086/378488

    Article  ADS  Google Scholar 

  24. Joy, D.C.: Monte Carlo Modeling for Electron Microscopy and Microanalysis. Oxford Series in Optical and Imaging Sciences. Oxford University Press, Inc. (1995)

  25. Kontar, E.P., Brown, J.C.: Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft. Astrophys. J. Lett. 653, L149–L152 (2006). doi:10.1086/510586

    Article  ADS  Google Scholar 

  26. Kontar, E.P., Jeffrey, N.L.S.: Positions and sizes of X-ray solar flare sources. Astron. Astrophys. 513, L2+ (2010). doi:10.1051/0004-6361/201014066

  27. Langer, S.H., Petrosian, V.: Impulsive solar X-ray bursts. III—polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere. Astrophys. J. Lett. 215, 666–676 (1977). doi:10.1086/155400

    Article  Google Scholar 

  28. Leach, J., Petrosian, V.: The impulsive phase of solar flares. II—characteristics of the hard X-rays. Astrophys. J. 269, 715–727 (1983). doi:10.1086/161081

    Article  ADS  Google Scholar 

  29. Leach, J., Petrosian, V., Emslie, A.G.: The interpretation of hard X-ray polarization measurements in solar flares. Sol. Phys. 96, 331–337 (1985). doi:10.1007/BF00149688

    Article  ADS  Google Scholar 

  30. Lin, R.P., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 210, 3–32 (2002). doi:10.1023/A:1022428818870

    Article  ADS  Google Scholar 

  31. Lin, R.P., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69–L76 (2003). doi:10.1086/378932

    Article  ADS  Google Scholar 

  32. Martoff, C., Ayad, R., Katz-Hyman, M., Bonvicini, G., Schreiner, A.: Negative ion drift and diffusion in a TPC near 1 bar. Nucl. Instrum. Methods A 555(1–2), 55–58 (2005). doi:10.1016/j.nima.2005.08.103

    Article  ADS  Google Scholar 

  33. McConnell, M.L., et al.: RHESSI as a hard X-ray polarimeter. Sol. Phys. 210, 125–142 (2002). doi:10.1023/A:1022413708738

    Article  ADS  Google Scholar 

  34. McConnell, M.L., et al.: RHESSI solar flare polarization measurements in the 20–100 keV energy range. In: American Astronomical Society Meeting 210, #93.01. Bulletin of the American Astronomical Society, vol. 38, p. 211 (2007)

  35. McConnell, M.L., et al.: GRAPE: a balloon-borne gamma-ray polarimeter. In: Siegmund, O.H. (ed.) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVI. Soc. Photo-Opt. Instrum. Eng. (SPIE) Conference Series, vol. 7435, p. 74350J (2009). doi:10.1117/12.826407

  36. Miyamoto, J., et al.: GEM operation in negative ion drift gas mixtures. Nucl. Instrum. Methods A 526(3), 409–412 (2004). doi:10.1016/j.nima.2004.02.018

    Article  ADS  Google Scholar 

  37. Mizuno, T., et al.: Geant4 based cosmic-ray background simulator for balloon experiments. In: Nuclear Science Symposium Conference Record, 2001 IEEE, vol. 1, pp. 442–446 (2001)

  38. Murphy, R.J., et al.: Physical implications of RHESSI neutron-capture line measurements. Astrophys. J. Lett. 595, L93–L96 (2003). doi:10.1086/378175

    Article  ADS  Google Scholar 

  39. Novick, R., et al.: Detection of X-ray polarization of the Crab Nebula. Astrophys. J. Lett. 174, L1+ (1972). doi:10.1086/180938

  40. Ohnuki, T., Snowden-Ifft, D.P., Martoff, C.J.: Measurement of carbon disulfide anion diffusion in a TPC. Nucl. Instrum. Methods A 463(1–2), 142–148 (2001). doi:10.1016/S0168-9002(01)00222-4

    Article  ADS  Google Scholar 

  41. Pacciani, L., et al.: Sensitivity of a photoelectric X-ray polarimeter for astronomy: the impact of the gas mixture and pressure. In: Fineschi, S. (ed.) Polarimetry in Astronomy. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 4843, pp. 394–405 (2003). doi:10.1117/12.459275

  42. Sakurai, H., Noma, M., Niizeki, H.: A hard X-ray polarimeter utilizing Compton scattering. In: EUV Optics for Astronomy, Microscopy, Polarimetry, and Projection Lithography. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1343, pp. 512–518 (1990)

  43. Salvat, F., Jablonski, A.: NIST Standard Reference Database 64—NIST Electron Elastic-Scattering Cross-Section Database Version 3.1. National Institue of Standards and Technology (NIST) (2003). http://www.nist.gov/srd/nist64.cfm. Accessed 18 Oct 2010

  44. Shih, A.Y., et al.: The Gamma-Ray Imager/Polarimeter For Solar Flares (GRIPS). In: AAS/Solar Physics Division Meeting 40, #18.10. Bulletin of the American Astronomical Society, vol. 41, p. 846 (2009)

  45. Shvyd’ko, Y.V., et al.: High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys. 6, 196–199 (2010). doi:10.1038/NPHYS1506

    Article  Google Scholar 

  46. Soffitta, P., et al.: Proportional counters for the Stellar X-Ray Polarimeter with a wedge and strip cathode pattern readout system. Nucl. Instrum. Methods A 414, 218–232 (1998). doi:10.1016/S0168-9002(98)00572-5

    Article  ADS  Google Scholar 

  47. Soffitta, P., et al.: A set of X-ray polarimeters for the New Hard X-ray imaging and polarimetric mission. In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instumentation 2010: Ultraviolet to Gamma Ray. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 7732, p. 77321A (2010). doi:10.1117/12.856434

  48. Suarez-Garcia, E., et al.: X-ray polarization of solar flares measured with RHESSI. Sol. Phys. 239, 149–172 (2006). doi:10.1007/s11207-006-0268-1

    Article  ADS  Google Scholar 

  49. Sui, L., Holman, G.D., Dennis, B.R.: Determination of low-energy cutoffs and total energy of nonthermal electrons in a solar flare on 2002 April 15. Astrophys. J. 626, 1102–1109 (2005). doi:10.1086/430086

    Article  ADS  Google Scholar 

  50. Swank, J., Kallman, T., Jahoda, K.: Gravity and Extreme Magnetism SMEX. In: 37th COSPAR Scientific Assembly. COSPAR, Plenary Meeting, vol. 37, p. 3102 (2008)

  51. Tindo, I.P., et al.: On the polarization of the emission of X-ray solar flares. Sol. Phys. 14, 204–207 (1970). doi:10.1007/BF00240179

    Article  ADS  Google Scholar 

  52. Tindo, I.P., et al.: New measurements of the polarization of X-ray solar flares. Sol. Phys. 24, 429–433 (1972). doi:10.1007/BF00153385

    Article  ADS  Google Scholar 

  53. Tindo, I.P., et al.: Preliminary interpretation of the polarization measurements performed on ‘Intercosmos-4’ during three X-ray solar flares. Sol. Phys. 27, 426–435 (1972). doi:10.1007/BF00153113

    Article  ADS  Google Scholar 

  54. Tindo, I.P., et al.: Further polarization measurements of the solar flare X-ray emission. Sol. Phys. 32, 469–475 (1973). doi:10.1007/BF00154959

    Article  ADS  Google Scholar 

  55. Tramiel, L.J., Novick, R., Chanan, G.A.: Polarization evidence for the isotropy of electrons responsible for the production of 5-20 keV X-rays in solar flares. Astrophys. J. 280, 440–447 (1984). doi:10.1086/162010

    Article  ADS  Google Scholar 

  56. Weisskopf, M.C., Elsner, R.F., O’Dell, S.L.: On understanding the figures of merit for detection and measurement of X-ray polarization. In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instumentation 2010: Ultraviolet to Gamma Ray. Proc. Soc. Photo-Opt. Instrum. Eng., vol. 7732, p. 77320E (2010). doi:10.1117/12.857357

  57. Weisskopf, M.C., et al.: Measurement of the X-ray polarization of the Crab Nebula. Astrophys. J. Lett. 208, L125–L128 (1976). doi:10.1086/182247

    Article  ADS  Google Scholar 

  58. Weisskopf, M.C., et al.: A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. Lett. 220, L117–L121 (1978). doi:10.1086/182648

    Article  ADS  Google Scholar 

  59. Weisskopf, M.C., et al.: On calibrations using the Crab Nebula and models of the nebular X-ray emission. Astrophys. J. 713, 912–919 (2010). doi:10.1088/0004-637X/713/2/912

    Article  ADS  Google Scholar 

  60. Zastawny, A.: Standardization of gas amplification description in proportional counters. Nucl. Instrum. Methods A 385, 239–242 (1997)

    Article  ADS  Google Scholar 

  61. Zhitnik, I.A., et al.: Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite. Sol. Syst. Res. 40, 93–103 (2006). doi:10.1134/S003809460602002X

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA through the Heliophysics Low Cost Access to Space program of the Research Opportunities in Space and Earth Sciences (ROSES). Several individuals have provided technical assistance or advice for this project. We thank Bob Baker and Ken Simms for custom electronics. Michael Dion assisted especially with the cleaning and stretching of GEMs. Jeff Martoff provided useful advice and ideas particularly concerning detector gas. Zach Prieskorn’s work with a similar detector provided a useful baseline for testing and troubleshooting various problems. Phil Kaaret suggested polarization through Compton scattering and provided references. We thank Toru Tamagawa for help communicating with Japanese suppliers. Finally, we thank Zhong Zhong for assistance concerning the use of synchrotron radiation for 20–50 keV polarized X-rays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hosack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosack, M., Black, J.K., Deines-Jones, P. et al. Imaging X-ray Polarimeter for Solar Flares (IXPS). Exp Astron 32, 101–125 (2011). https://doi.org/10.1007/s10686-011-9254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9254-1

Keywords

Navigation