Advertisement

Erkenntnis

, Volume 80, Supplement 3, pp 575–586 | Cite as

Probability and Typicality in Deterministic Physics

  • Meir Hemmo
  • Orly Shenker
Original Article

Abstract

In this paper we analyze the relation between the notion of typicality and the notion of probability and the related question of how the choice of measure in deterministic theories in physics may be justified. Recently it has been argued that although the notion of typicality is not a probabilistic notion, it plays a crucial role in underwriting probabilistic statements in classical statistical mechanics and in Bohm’s theory. We argue that even in theories with deterministic dynamics, like classical statistical mechanics and Bohm’s theory, the notion of probability can be understood as fundamentally objective, and that it is the notion of probability rather than typicality that may (sometimes) have an explanatory value.

Keywords

Lebesgue Measure Statistical Mechanic Ergodic Theorem Thermodynamic System Bohmian Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is supported by the Israel Academy of Science, Grant Number 713/10 and by the German-Israel Foundation, Grant Number 1054/09.

References

  1. Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press. Google Scholar
  2. Dürr, D. (2001). Bohmian mechanics. In J. Bricmont, D. Dürr, M. C. Galavotti, G. Ghirardi, F. Petruccione, & N. Zanghi (Eds.), Chance in physics: Foundations and perspectives, lecture notes in physics (pp. 115–132). Verlag: Springer.CrossRefGoogle Scholar
  3. Dürr, D., Sheldon, G., & Nino, Z. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67(5/6), 843–907.CrossRefGoogle Scholar
  4. Einstein, A. (1905). Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik 17, 549–560. English translation In: R. Furth (Ed.) Einstein, Albert, Investigations on the Theory of Brownian Motion, New York: Dover, 1926.Google Scholar
  5. Frigg, R., Berkovitz, J.,& Kronz, F. (2011) The ergodic hierarchy. In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2011 Edition). http://plato.stanford.edu/archives/sum2011/entries/ergodic-hierarchy/.
  6. Goldstein, S. (2012) Typicality and notions of probability in physics. In Y. Ben-Menahem & M. Hemmo, Probability in physics (pp. 59–72). Berlin Heidelberg: Springer.Google Scholar
  7. Goldstein, S., Lebowitz, J., Tumulka, R., & Zanghi, N. (2006). Canonical typicality. Physical Review Letters, 96, 050403.CrossRefGoogle Scholar
  8. Goldstein, S., & Struyve, W. (2007). On the uniqueness of quantum equilibrium in Bohmian mechanics. Journal of Statistical Physics, 128, 1197–1209.CrossRefGoogle Scholar
  9. Hemmo, M., & Shenker, O. (2010). Maxwell's Demon. The Journal of Philosophy, 107, 389–411.Google Scholar
  10. Hemmo, M., & Shenker, O. (2011). Szilard's perpetuum mobile. Philosophy of Science, 78, 264–283.Google Scholar
  11. Hemmo, M., & Shenker, O. (2012). The road to Maxwell’s demon. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Pitowsky, I. (1992). Why does physics need mathematics? A comment. In E. Ulmann-Margalit (Ed.), The scientific enterprise (pp. 163–167). Dordrecht: Kluwer.CrossRefGoogle Scholar
  13. Pitowsky, I. (2012) Typicality and the role of the Lebesgue measure in statistical mechanics. In Y. Ben-Menahem, & M. Hemmo, Probability in physics. Berlin Heidelberg: Springer, pp. 41–58.Google Scholar
  14. Popesecu, S., Short, A.J., & Winter, A. (2005). The foundations of statistical mechanics from entanglement: Individual states versus averages. http://arxiv.org/ads/quant-ph/0511225.
  15. Uffink, J. (2007). Compendium to the foundations of classical statistical physics, In J. Butterfield & J. Earman (Eds.), Handbook for the Philosophy of Physics, Part B, (pp. 923–1074). North-Holland, Elsevier.Google Scholar
  16. Uffink, J., & Valente, G. (2010). Time’s arrow and Lanford’s theorem. Seminaire Poincare XV Le Temps, 141–173.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Philosophy DepartmentUniversity of HaifaHaifaIsrael
  2. 2.Program in the History and Philosophy of ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations