, Volume 80, Issue 2, pp 303–337 | Cite as

Some Puzzles and Unresolved Issues About Quantum Entanglement

  • John Earman
Original Article


Schrödinger (Proc Camb Philos Soc 31:555–563, 1935) averred that entanglement is the characteristic trait of quantum mechanics. The first part of this paper is simultaneously an exploration of Schrödinger’s claim and an investigation into the distinction between mere entanglement and genuine quantum entanglement. The typical discussion of these matters in the philosophical literature neglects the structure of the algebra of observables, implicitly assuming a tensor product structure of the simple Type I factor algebras used in ordinary Quantum Mechanics (QM). This limitation is overcome by adopting the algebraic approach to quantum physics, which allows a uniform treatment of ordinary QM, relativistic quantum field theory, and quantum statistical mechanics. The algebraic apparatus helps to distinguish several different criteria of quantum entanglement and to prove results about the relation of quantum entanglement to two additional ways of characterizing the classical versus quantum divide, viz. abelian versus non-abelian algebras of observables, and the ability versus inability to interrogate the system without disturbing it. Schrödinger’s claim is reassessed in the light of this discussion. The second part of the paper deals with the relativity-to-ambiguity threat: the entanglement of a state on a system algebra is entanglement of the state relative to a decomposition of the system algebra into subsystem algebras; a state may be entangled with respect to one decomposition but not another; hence, unless there is some principled way to choose a decomposition, entanglement is a radically ambiguous notion. The problem is illustrated in terms a Realist versus Pragmatist debate, the former claiming that the decomposition must correspond to real as opposed to virtual subsystems, while the latter claims that the real versus virtual distinction is bogus and that practical considerations can steer the choice of decomposition. This debate is applied to the fraught problem of measuring entanglement for indistinguishable particles. The paper ends with some (intentionally inflammatory) remarks about claims in the philosophical literature that entanglement undermines the separability or independence of subsystems while promoting holism.



I am grateful to an anonymous referee for suggestions that led to improvements of a earlier version of this article.


  1. Amico, L., Fazio, R., Osterloh, A., & Derdal, V. (2008). Entanglement in many-body systems. Reviews of Modern Physics, 80, 517–576.CrossRefGoogle Scholar
  2. Ancin, A., Andrianov, A., Costa, L., Jané, E., Latorre, J. I., & Tarrach, R. (2000). Generalized Schmidt decompositon and classification of three-quantum-bit states. Physical Review Letters, 85, 1560–1563.CrossRefGoogle Scholar
  3. Bañuls, M.-C., Cirac, J. I., & Wolf, M. M. (2007). Entanglement in fermionic systems. Physical Review A, 76, 022311-1–13.CrossRefGoogle Scholar
  4. Bratteli, O., & Robinson, D. W. (1987). Operator algebras and quantum statistical mechanics 1 (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  5. Brauenstein, S. L., Mann, A., & Revzen, M. (1992). Maximal violations of Bell inequalities for mixed states. Physical Review Letters, 68, 3259–3261.CrossRefGoogle Scholar
  6. Bruß, D. (2002). Characterizing entanglement. Journal of Mathematical Physics, 43, 4237–4251.CrossRefGoogle Scholar
  7. Buchholz, D. (1974). Product states for local algebras. Communications in Mathematical Physics, 36, 287–304.CrossRefGoogle Scholar
  8. Clifton, R., & Halvorson, H. (2001). Entanglement and open systems in algebraic quantum field theory. Studies in History and Philosophy of Modern Physics, 32, 1–31.CrossRefGoogle Scholar
  9. d’Espagnat, B. (1971). Conceptual foundations of quantum mechanics. Menlo Park, CA: W. A. Benjamin.Google Scholar
  10. de la Torre, A. C., Goyeneche, D., & Leitao, L. (2010). Entanglement for all quantum states. European Journal of Physics, 31, 325–332.CrossRefGoogle Scholar
  11. Dowling, M. R., Doherty, A. C., & Wiseman, H. M. (2006). Entanglement of indistinguishable particles in condensed matter physics. Physical Review A, 73, 052323-1–12.CrossRefGoogle Scholar
  12. Earman, J. (2008). Superselection rules for philosophers. Erkenntnis, 69, 377–414.CrossRefGoogle Scholar
  13. Eckert, K., & Schliemann, J. (2002). Quantum correlations in systems of indistinguishable particles. Annals of Physics, 299, 88–127.CrossRefGoogle Scholar
  14. Einstein, A. (1948). Quantum mechanics and reality. Dialectica, 2, 323–324.CrossRefGoogle Scholar
  15. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.CrossRefGoogle Scholar
  16. Fine, A. (1996). The shaky game: Einstein, realism, and the quantum theory (2nd ed.). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  17. Fogel, B. (2007). Formalizing the separability condition on Bell’s theorem. Studies in History and Philosophy of Modern Physics, 38, 920–937.CrossRefGoogle Scholar
  18. Garg, A., & Mermin, N. D. (1982). Correlation inequalities and hidden variables. Physical Review Letters, 49, 1220–1223.CrossRefGoogle Scholar
  19. Ghirardi, G., Marinatto, L., & Weber, T. (2002). Entanglement and properties of composite quantum systems: A conceptual and mathematical analysis. Journal of Statistical Physics, 108, 49–122.CrossRefGoogle Scholar
  20. Ghirardi, G., & Marinatto, L. (2003). Entanglement and properties. Fortschritte der Physik, 51, 379–387.CrossRefGoogle Scholar
  21. Ghirardi, G., & Marinatto, L. (2004a). Criteria for the entanglement of composite systems with identical particles. Fortschritte der Physik, 52, 1045–1051.CrossRefGoogle Scholar
  22. Ghirardi, G., & Marinatto, L. (2004b). General criteria for the entanglement of two indistinguishable particles. Physical Review A, 70, 102109-1–102109-10.CrossRefGoogle Scholar
  23. Ghirardi, G., & Marinatto, L. (2005). Identical particles and entanglement. Optics and Spectroscopy, 99, 386–390.CrossRefGoogle Scholar
  24. Giddings, J. R., & Fisher, A. J. (2002). Describing mixed spin-space entanglement of pure states of indistinguishable particles using occupation-number basis. Physical Review A, 66, 032305-1–11.Google Scholar
  25. Gisin, N. (1991). Bell’s inequality holds for all non-product states. Physics Letters A, 154, 201–202.CrossRefGoogle Scholar
  26. Gisin, N., & Peres, A. (1992). Maximal violation of Bell’s inequality for arbitrarily large spin. Physics Letters A, 162, 15–17.CrossRefGoogle Scholar
  27. Haag, R. (1992). Local quantum physics. Berlin: Springer.CrossRefGoogle Scholar
  28. Halvorson, H., & Clifton, R. (2000). Generic Bell correlation between arbitrary local algebras in quantum field theory. Journal of Mathematical Physics, 41, 1711–1718.CrossRefGoogle Scholar
  29. Hamhalter, J. (2003). Quantum measure theory. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  30. Harshman, N. L., & Wickramasekara, S. (2007). Tensor product structures, entanglement, and particle scattering. Open Systems and Information Dynamics, 14, 341–351.CrossRefGoogle Scholar
  31. Healey, R. (2008). Holism and nonseparability in physics. In Stanford encyclopedia of philosophy. URL:
  32. Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81, 865–942.CrossRefGoogle Scholar
  33. Horuzhy, S. S. (1990). Introduction to algebraic quantum field theory. Dordrecht: Kluwer Academic.Google Scholar
  34. Howard, D. (1989). Holism, separability, and the metaphysical implications of the Bell Experiments. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 224–253). Notre Dame, IN: University of Nature Dame Press.Google Scholar
  35. Kaplan, T. A. (2005). On fermion entanglement. Fluctuation and Noise Letters, 5, C15–C22.CrossRefGoogle Scholar
  36. Li, N., & Luo, S. (2008). Classical states versus separable states. Physical Review A, 78, 024303-1–4.Google Scholar
  37. Li, Y. S., Zeng, B., Liu, X. S., & Long, G. L. (2001). Entanglement in a two-identical-particle system. Physical Review A, 64, 054302-1–4.Google Scholar
  38. Luo, S. (2008). Using measurement-induced disturbance to characterize correlations as classical or quantum. Physical Review A, 77, 022301-1–5.Google Scholar
  39. Messiah, A. M., & Greenberg, O. W. (1964). Symmetrization postulate and its experimental foundation. Physical Review, 136, 248–267.CrossRefGoogle Scholar
  40. Modi, K., Paterek, T., Son, W., Vederal, V., & Williamson, M. (2010). Unified view of quantum and classical correlations. Physical Review Letters, 104, 080501-1–4.CrossRefGoogle Scholar
  41. Ollivier, H., & Zurek, H. (2002). Quantum discord: A measure of quantumness of correlations. Physical Review Letters, 88, 017901-1–4.Google Scholar
  42. Paškauskas, R., & You, L. (2001). Quantum correlation in two-boson wave functions. Physical Review A, 64, 042310-1–4.Google Scholar
  43. Peres, A. (1995). Higher order Schmidt decompositions. Physics Letters A, 202, 16–17.CrossRefGoogle Scholar
  44. Plastino, A. R., Manzano, D., & Dehesa, J. S. (2005). Separability criteria and entanglement measures for pure states of N identical particles. European, Physics Letters, 86, 2005-p1–2005-p5.Google Scholar
  45. Popescu, S. (1994). Bell’s inequalities versus teleportation: What is nonlocality? Physical Review Letters, 72, 797–799.CrossRefGoogle Scholar
  46. Raggio, G. A. (1988). A remark on Bell’s inequality and decomposable normal states. Letters in Mathematical Physics, 15, 27–29.CrossRefGoogle Scholar
  47. Schliemann, J., Cirac, I. I., Kuś, M., Lewenstein, M., & Loss, D. (2001). Quantum correlations in two-fermion systems. Physical Review A, 64, 022303-1–9.CrossRefGoogle Scholar
  48. Schlosshauer, M. (2007). Decoherence and the quantum-to-classical transition. Berlin: Springer.Google Scholar
  49. Schmidt, E. (1906). Zur theorie linearen und nichtlinearen Integralgleichungen. Mathmatische Annalen, 63, 433–476.CrossRefGoogle Scholar
  50. Schrödinger, E. (1935). Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society, 31, 555–563; 32 (1936), 446–451.Google Scholar
  51. Shi, Y. (2003). Quantum entanglement of identical particles. Physical Review A, 67, 02430-1–02430-4.CrossRefGoogle Scholar
  52. Shi, Y. (2004). Quantum entanglement in second-quantized condensed matter physics. Journal of Physics A, 37, 6807–6822.CrossRefGoogle Scholar
  53. Summers, S. J. (1990). On the independence of local algebras in quantum field theory. Reviews in Mathematical Physics, 2, 201–247.CrossRefGoogle Scholar
  54. Summers, S. J. (2009). Subsystems and independence in relativistic microscopic physics. Studies in History and Philosophy of Modern Physics, 40, 133–141.CrossRefGoogle Scholar
  55. Sunder, V. (1986). An invitation to von Neumann algebras. Berlin: Springer.Google Scholar
  56. Tommasini, P., & Timmermans, E. (1998). The hydrogen atom as an entangled electron-positron pair. American Journal of Physics, 66, 881–886.CrossRefGoogle Scholar
  57. Valente, G. (2013). Local disentanglement in relativistic quantum field theory. Pre-print.Google Scholar
  58. Wang, X.-H., Fei, S.-M., & Wu, K. (2006). Separability and entanglement of identical bosonic systems. Journal of Physics A, 39, L555–557.CrossRefGoogle Scholar
  59. Werner, W. F. (1989). Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model. Physical Review A, 40, 4277–4281.CrossRefGoogle Scholar
  60. Winsberg, E., & Fine, A. (2003). Quantum life: Interaction, entanglement, and separation. Journal of Philosophy, C, 80–97.Google Scholar
  61. Wiseman, H. M., & Vaccaro, J. A. (2003). Entanglement of indistinguishable particles shared between two parties. Physical Review Letters, 91, 097902-1–097902-4.CrossRefGoogle Scholar
  62. Zanardi, P. (2001). Virtual quantum systems. Physical Review Letters, 87, 077901-1–077901-4.CrossRefGoogle Scholar
  63. Zanardi, P. (2002). Quantum entanglement for fermionic states. Physical Review A, 65, 042101-1–042101-5.CrossRefGoogle Scholar
  64. Zanardi, P., Lidar, D. A., & Lloyd, S. (2004). quantum tensor product structures are observable induced. Physical Review Letters, 92, 06042-1–06042-4.CrossRefGoogle Scholar
  65. Zanardi, P., & Wang, X. (2002). Fermionic entanglement in itererant systems. Journal of Physics A, 35, 7947–7959.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations