Skip to main content

Advertisement

Log in

Soil Water Content Estimated by Support Vector Machine for the Assessment of Shallow Landslides Triggering: the Role of Antecedent Meteorological Conditions

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Soil water content is a key parameter for representing water dynamics in soils. Its prediction is fundamental for different practical applications, such as identifying shallow landslides triggering. Support vector machine (SVM) is a machine learning technique, which can be used to predict the temporal trend of a quantity since training from past data. SVM was applied to a test slope of Oltrepò Pavese (northern Italy), where meteorological parameters coupled with soil water content at different depths (0.2, 0.4, 0.6, 1.0, 1.2, 1.4 m) were measured. Two SVM models were developed for water content assessment: (i) model 1, considering rainfall amount, air temperature, air humidity, net solar radiation, and wind speed; (ii) model 2, considering the same predictors of model 1 together with antecedent condition parameters (cumulated rainfall of 7, 30, and 60 days; mean air temperature of 7, 30, and 60 days). SVM model 2 showed significantly higher satisfactory results than model 1, for both training and test phases and for all the considered soil levels. SVM models trends were implemented in a methodology of slope safety factor assessment. For a real event occurred in the tested slope, the triggering time was correctly predicted using data estimated by SVM model based on antecedent meteorological conditions. This confirms the necessity of including these predictors for building a SVM technique able to estimate correctly soil moisture dynamics in time. The results of this paper show a promising potential application of the SVM methodologies for modeling soil moisture required in slope stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, H., Xie, D., & Wu, W. (2008). Soil water content forecasting by ANN and SVM hybrid architecture. Environmental Monitoring and Assessment, 143, 187–193.

    Google Scholar 

  2. Bittelli, M. (2011). Measuring soil water content: a review. Hortechnology, 21(3), 293–300.

    Google Scholar 

  3. Ahmad, S., Kalra, A. F., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: a machine learning approach. Advances in Water Resources, 33, 69–80.

    Google Scholar 

  4. Godt, J. W., Baum, R. L., & Lu, N. (2009). Landsliding in partially saturated materials. Geophysical Research Letters. https://doi.org/10.1029/2008GL03599.

  5. Montrasio, L., Valentino, R., & Losi, G. L. (2011). Towards a real-time susceptibility assessment of rainfall induced shallow landslides on a regional scale. Natural Hazards and Earth System Sciences, 11, 1927–1947.

    Google Scholar 

  6. Porporato, A., & Rodriguez-Iturbe, I. (2002). Ecohydrology—a challenging multidisciplinary research perspective. Hydrological Sciences Journal, 47(5), 811–821.

    Google Scholar 

  7. Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., & Yamada, T. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140.

    CAS  Google Scholar 

  8. Ray, R. L., & Jacobs, J. M. (2007). Relationships among remotely sensed soil moisture, precipitation and landslide events. Natural Hazards, 43, 211–222.

    Google Scholar 

  9. Brocca, L., Melone, F., & Moramarco, T. (2008). On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrological Processes, 22, 629–642.

    Google Scholar 

  10. Brocca, L., Ponziani, F., Moramarco, T., Melone, F., Berni, N., & Wagner, W. (2012). Improving landslide forecasting using ASCAT-derived soil moisture data: a case study of the Torgiovannetto landslide in Central Italy. Remote Sensing, 4, 1232–1244.

    Google Scholar 

  11. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., & Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128–5141.

    Google Scholar 

  12. Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S., Bloschl, G., Scipal, K., Fernzandez, J. M., & Low, A. (2008). Temporal stability of soil moisture and radar backscatter observed by the advanced aperture radar (ASAR). Sensors, 8, 1174–1197.

    Google Scholar 

  13. Ray, R. L., Jacobs, J. M., & Ballestero, T. P. (2011). Regional landslide susceptibility: spatiotemporal variations under dynamic soil moisture conditions. Natural Hazards, 39, 1317–1337.

    Google Scholar 

  14. Mittelbach, H., & Seneviratne, S. I. (2012). A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions. Hydrology and Earth System Sciences, 16, 2169–2179.

    Google Scholar 

  15. Ponziani, F., Pandolfo, C., Stelluti, M., Berni, N., Brocca, L., & Moramarco, T. (2012). Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides, 9, 229–237.

    Google Scholar 

  16. Vauchad, G., Passerat De Silans, A., Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49(4), 822–828.

    Google Scholar 

  17. Montrasio, L., & Valentino, R. (2008). A model for triggering mechanisms of shallow landslides. Natural Hazards and Earth System Sciences, 8, 1149–1159.

    Google Scholar 

  18. Deng, J., Chen, X., Du, Z., & Zhang, Y. (2011). Soil water simulation and predication using stochastic models based on LS-SVM for red soil region of China. Water Resources Management, 25, 2823–2836.

    Google Scholar 

  19. Chopart, J. L., & Vauclin, M. (1990). Water balance estimation model: field test and sensitivity analysis. Soil Science Society of America Journal, 54(5), 1377–1384.

    Google Scholar 

  20. Cameira, M. R., Fernando, R. M., & Pereira, L. S. (2003). Monitoring water and NO3-N in irrigated maize fields in the Sorraia Watershed, Portugal. Agricultural Water Management, 60(3), 199–216.

    Google Scholar 

  21. Panigrahi, B., & Panda, S. N. (2003). Field test of a soil water balance simulation model. Agricultural Water Management, 58(3), 223–240.

    Google Scholar 

  22. Valentino, R., Montrasio, L., Losi, G. L., & Bittelli, M. (2011). An empirical model for the evaluation of the degree of saturation of shallow soils in relation to rainfalls. Canadian Geotechnical Journal, 48, 795–809.

    Google Scholar 

  23. Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., Van Walsum, P.E.V., Groenendijk, P. & Van Diepen, C.A. (1997). Theory of SWAP, version 2.0. Simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment. Tech. Rep. Dep. Water Resources, DLO Winand Staring Centre, Wageningen, the Netherlands.

  24. Neitsch, S.L., Arnold, J.G., Kiniry, J.R. & Williams, J.R. (2005). Soil and water assessment tool (SWAT), theoretical documentation. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Temple.

  25. Šimůnek, J., & Van Genuchten, M. T. (2008a). Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone Journal, 7, 782–797.

    Google Scholar 

  26. Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2008b). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 4.0. Riverside: Dep. Environ. Sci., Univ. of California.

    Google Scholar 

  27. Lamorski, K., Pastuszka, T., Krzyszczak, J., Sławiński, C., & Witkowska-Walczak, B. (2013). Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone Journal. https://doi.org/10.2136/vzj2013.05.0085.

    Google Scholar 

  28. ASCE Task Committee. (2000a). Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115–123.

    Google Scholar 

  29. ASCE Task Committee. (2000b). Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.

    Google Scholar 

  30. Jiang, H., & Cotton, W. R. (2004). Soil moisture estimation using an artificial neural network: a feasibility study. Canadian Journal of Remote Sensing, 30, 827–839.

    Google Scholar 

  31. Zou, P. J., Yang, J., Fu, J., Liu, G., & Li, D. (2010). Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97, 2009–2019.

    Google Scholar 

  32. Dai, X., Huo, Z., & Wang, H. (2011). Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121, 441–449.

    Google Scholar 

  33. Gill, M. K., Kemblowski, M. W., & McKee, M. (2007). Soil moisture data assimilation using support vector machines and ensemble Kalman filter. Journal of the American Water Resources Association, 43(4), 1004–1015.

    Google Scholar 

  34. Liu, D., Yu, Z. B., & Hai-she, L. (2010). Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction. Water Science and Engineering, 3(4), 361–377.

    Google Scholar 

  35. Yu, Z., Liu, D., Lu, H., Fu, X., Xiang, L., & Zhu, Y. (2012). A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. Journal of Hydrology, 475, 53–64.

    Google Scholar 

  36. Raghavendra, S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19, 372–386.

    Google Scholar 

  37. Asefa, T., Kemblowski, M., McKee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology, 318, 7–16.

    Google Scholar 

  38. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  39. Li, C., Ma, T., Zhu, X., & Li, W. (2011). The power-law relationship between landslide occurrence and rainfall level. Geomorphology, 130, 221–229.

    Google Scholar 

  40. Arnone, E., Caracciolo, D., Noto, L. V., Preti, F., & Bras, R. L. (2016b). Modeling the hydrological and mechanical effect of roots on shallow landslides. Water Resources Research, 52(11), 8590–8612.

    Google Scholar 

  41. Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure and Applied Geophysics, 157, 1059–1079.

    Google Scholar 

  42. Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247–265.

    Google Scholar 

  43. Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429–443.

    Google Scholar 

  44. Giannecchini, R., Galanti, Y., & D’Amato Avanzi, G. (2012). Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Natural Hazards and Earth System Sciences, 12, 829–842.

    Google Scholar 

  45. Martelloni, G., Segoni, S., Fanti, R., & Catani, F. (2012). Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9, 485–495.

    Google Scholar 

  46. Lagomarsino, D., Segoni, S., Fanti, R., & Catani, F. (2013). Updating and tuning a regional-scale landslide early warning system. Landslides, 10, 91–97.

    Google Scholar 

  47. Ma, T., Li, C., Lu, Z., & Wang, B. (2014). An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology, 216, 187–192.

    Google Scholar 

  48. Mathew, J., Giri Babu, D., Kundu, S., Vinod Kumar, K., & Pant, C. C. (2014). Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides, 11, 575–588.

    Google Scholar 

  49. Kirschbaum, D. B., Stanley, T., & Simmons, J. (2015). A dynamic landslide hazard assessment system for Central America and Hispaniola. Natural Hazards and Earth System Sciences, 15, 2257–2272.

    Google Scholar 

  50. Caracciolo, D., Arnone, E., Lo Conti, F., & Noto, L. V. (2017). Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environmental Earth Sciences, 76, 222. https://doi.org/10.1007/s12665-017-6545-5.

    Article  Google Scholar 

  51. Lu, N., & Godt, J. W. (2008). Infinite slope stability under steady unsaturated seepage conditions. Water Resources Research. https://doi.org/10.1029/2008WR006976.

  52. Lu, N., & Godt, J. W. (2013). Hillslope hydrology and stability. Cambridge: Cambridge University Press.

    Google Scholar 

  53. Zizioli, D., Meisina, C., Valentino, R., & Montrasio, L. (2013). Comparison between different approaches to modelling shallow landslide susceptibility: a case history in Oltrepò Pavese, Northern Italy. Natural Hazards and Earth System Sciences, 13, 559–573.

    Google Scholar 

  54. Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., & Chersich, S. (2015). Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Engineering Geology, 193, 19–37.

    Google Scholar 

  55. IUSS Working Group WRB. (2014). World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. Rome: World Soil Resources Reports No. 106, FAO.

    Google Scholar 

  56. Bordoni, M., Bittelli, M., Valentino, R., Chersich, S., & Meisina, C. (2017). Improving the estimation of complete field soil water characteristic curves through field monitoring data. Journal of Hydrology, 552, 283–305.

    Google Scholar 

  57. Bittelli, M., Valentino, R., Salvatorelli, F., & Rossi Pisa, P. (2012). Monitoring soil–water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology, 173–174, 161–173.

    Google Scholar 

  58. Cortes, C., & Vapnik, V. N. (1995). Support vector networks. Machine Learning, 20, 273–297.

    Google Scholar 

  59. Cristianini, N., & Shaw-Taylor, J. (2000). An introduction to support vector machines and other kernel based learning methods. Cambridge: Cambridge University Press.

    Google Scholar 

  60. Vapnik, V. N. (1998). Statistical learning theory. New York: John Wiley & Sons.

    Google Scholar 

  61. Yu, X., & Liong, S. Y. (2007). Forecasting of hydrologic time series with ridge regression in feature space. Journal of Hydrology, 332, 290–302.

    Google Scholar 

  62. Mehrotra, R., & Sharma, A. (2009). Evaluating spatio-temporal representation in daily rainfall sequences from three stochastic multi-site weather generation approaches. Advances in Water Resources, 32(6), 948–962.

    Google Scholar 

  63. Khalil, A. F., McKee, M., Kemblowski, M., Asefa, T., & Bastidas, L. (2006). Multiobjective analysis of chaotic dynamic systems with sparse learning machines. Advances in Water Resources, 29, 72–88.

    Google Scholar 

  64. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C. & Lin, C.C. (2015). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Resource Document. R package 1.6–7. https://cran.r-project.org/web/packages/e1071/e1071.pdf. Accessed 2 Feb 2017.

  65. Lu, N., Godt, J. W., & Wu, D. T. (2010). A closed-form equation for effective stress in unsaturated soil. Water Resources Research. https://doi.org/10.1029/2009WR008646.

  66. Terzaghi, K. (1943). Theoretical soil mechanics. New York: John Wiley.

    Google Scholar 

  67. Bishop, A. W. (1954). The use of pore water coefficients in practice. Geotechnique, 4, 148–152.

    Google Scholar 

  68. Lu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. Hoboken: Wiley.

    Google Scholar 

  69. Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142.

    Google Scholar 

  70. Lu, N., Wu, B., & Tan, C. P. (2007). Tensile strength characteristics of unsaturated sands. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 144–154.

    Google Scholar 

  71. Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Google Scholar 

  72. Godt, J. W., Baum, R. L., & Lu, N. (2009). Landsliding in partially saturated materials. Geophysical Research Letters, 36, L02403. https://doi.org/10.1029/2008GL03599.

    Article  Google Scholar 

  73. Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences, 81, 1–11.

    Google Scholar 

Download references

Acknowledgements

We thank Marco Tumiati for the assistance on the executions of the laboratory tests on the studied soils. The authors wish to thank the anonymous reviewers for their suggestions and contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Bordoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordoni, M., Bittelli, M., Valentino, R. et al. Soil Water Content Estimated by Support Vector Machine for the Assessment of Shallow Landslides Triggering: the Role of Antecedent Meteorological Conditions. Environ Model Assess 23, 333–352 (2018). https://doi.org/10.1007/s10666-017-9586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9586-y

Keywords

Navigation