Advertisement

Environmental Modeling & Assessment

, Volume 18, Issue 1, pp 85–94 | Cite as

An Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring

  • D. O. OmoleEmail author
  • E. O. Longe
  • A. G. Musa
Article

Abstract

Reaeration coefficient (k 2) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k 2) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.

Keywords

Reaeration coefficient Akaike information criteria Bayesian information criteria Modeling Model evaluation 

Notes

Acknowledgments

This research was supported by the International Foundation for Science (IFS), Stockholm, Sweden, through a grant (IFS Ref: W/4852-1) to D.O. Omole. Our gratitude also goes to Covenant University, Ota and University of Lagos, for the use of their facilities during the course of the research.

References

  1. 1.
    Agunwamba, J. C., Maduka, C. N., & Ofosaren, A. M. (2007). Analysis of pollution status of Amadi Creek and its management. Journal of Water Supply: Research and Technology-AQUA, 55(6), 427–435.Google Scholar
  2. 2.
    Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Caski (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
  3. 3.
    Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723.CrossRefGoogle Scholar
  4. 4.
    Baecheler, J. V., & Lazo, O. L. (1999). Evaluation of water quality modeling parameters: reaeration coefficient. Madrid: IAHR. Available at http://www.iahr.org/membersonly/grazproceedings99/doc/000/000/267.htm Accessed 22 Feb 2012.
  5. 5.
    Bansal, M. K. (1973). Atmospheric reaeration in natural streams. Water Research Bulletin, 11, 491–504.CrossRefGoogle Scholar
  6. 6.
    Bennett, J. P., & Rathbun, R. E. (1972). Reaeration in open channel flow. Professional paper 737. Reston: USGS.Google Scholar
  7. 7.
    Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkpf, J. K., Rupp, G. L., et al. (1985). Rates, constants and kinetics formulations in surface water quality modelling. EPA/600/3-85/040 (2nd ed.). Athens: U.S. Environmental Protection Agency, Environmental Research Laboratory.Google Scholar
  8. 8.
    Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). Berlin: Springer.Google Scholar
  9. 9.
    Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 33, 261–304.CrossRefGoogle Scholar
  10. 10.
    Cetin, M. C., & Erar, A. (2002). Variable selection with Akaike information criteria: a comparative study. Hacettepe Journal of Mathematics and Statistics, 31, 89–97.Google Scholar
  11. 11.
    Everitt, B. S. (2002). The Cambridge dictionary of statistics (2nd ed.). London: Cambridge University Press.Google Scholar
  12. 12.
    Harmel, R. D., & Smith, P. K. (2007). Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. Journal of Hydrology, 337, 326–336.CrossRefGoogle Scholar
  13. 13.
    Hurvich, C. F., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307.CrossRefGoogle Scholar
  14. 14.
    Jha, R., Ojha, C. S. P., & Bhatia, K. K. S. (2001). Refinement of predictive reaeration equations for a typical India river. Hydrological Processes, 15(6), 1047–1060.CrossRefGoogle Scholar
  15. 15.
    Jha, R., Ojha, C. S. P., & Bhatia, K. K. S. (2007). Development of Refined BOD and DO Models for Highly Polluted Kali River in India. Journal Environmental Engineering, 133(8), 839–852.CrossRefGoogle Scholar
  16. 16.
    Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101–108.CrossRefGoogle Scholar
  17. 17.
    Langbein, W. B., & Dururn, W. H. (1967). The aeration capacity of streams. Circular S42. Reston: U.S. Geological Survey.Google Scholar
  18. 18.
    Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.CrossRefGoogle Scholar
  19. 19.
    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.Google Scholar
  20. 20.
    O’Connor, D. J., & Dobbins, W. E. (1958). Mechanisms of reaeration of natural streams. ASCE Transportation, 153, 641.Google Scholar
  21. 21.
    Omole, D. O. (2011). Reaeration coefficient modeling: case study of River Atuwara, Ota, Nigeria. Saarbrücken: LAP Lambert Academic.Google Scholar
  22. 22.
    Omole, D. O., & Longe, E. O. (2012). Reaeration coefficient modeling: a case study of River Atuwara in Nigeria. Research Journal of Applied Sciences Engineering and Technology, 4(10), 1237-1243.Google Scholar
  23. 23.
    Owens, M., Edwards, R. W., & Gibbs, J. W. (1964). Some reaeration studies in Streams. International Journal of Air and Water Pollution, 8, 469–486.Google Scholar
  24. 24.
    Royall, R. M. (1997). Statistical evidence: a likelihood paradigm. New York: Chapman and Hall.Google Scholar
  25. 25.
    Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  26. 26.
    Singh, J., Knapp, H. V., Arnold, J. G., & Demissie, M. (2005). Hydrologic modelling of the Iroquous River watershed using HSPF and SWAT. Journal of the American Water Resources Association, 41(2), 361–375.CrossRefGoogle Scholar
  27. 27.
    Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River. Public Health Bulletin No 146, Public Health Service, Washington, DC.Google Scholar
  28. 28.
    Streeter, H. W., Wright, C. T., & Kehr, R. W. (1936). Measures of natural oxidation in polluted streams III. Sewage Works Journal, 8, 282–316.Google Scholar
  29. 29.
    Transparency for Nigeria. (2010). Ogun State. Available at: http://www.transparencyng.com/index.php?option=com_content&view=article&id=1632:ogun-state&catid=150&Itemid=131 Accessed 23 February 2012.
  30. 30.
    Upton, J. G., & Cook, I. T. (2008). A dictionary of statistics. London: Oxford University Press.Google Scholar
  31. 31.
    Yadav, A. S., Gururaja, K. V., Karthik, B., Rao, G. R., Mukri, V., & Subash Chandran, M. D., et al. (2008). Ecological status of River Kali flood plain. Available at http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ces_pubs/pubs_2008/theme1_02.pdf Accessed 23 Feb 2012.
  32. 32.
    Yang, Y. (2005). Can the strengths of AIC and BIC be shared? Biometrika, 92, 937–950.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Civil Engineering, College of Science and TechnologyCovenant UniversityOtaNigeria
  2. 2.Department of Civil and Environmental EngineeringUniversity of LagosLagosNigeria
  3. 3.Department of Computer and Information Systems, College of Science and TechnologyCovenant UniversityOtaNigeria

Personalised recommendations