Skip to main content
Log in

An Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Reaeration coefficient (k 2) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k 2) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agunwamba, J. C., Maduka, C. N., & Ofosaren, A. M. (2007). Analysis of pollution status of Amadi Creek and its management. Journal of Water Supply: Research and Technology-AQUA, 55(6), 427–435.

    Google Scholar 

  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Caski (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723.

    Article  Google Scholar 

  4. Baecheler, J. V., & Lazo, O. L. (1999). Evaluation of water quality modeling parameters: reaeration coefficient. Madrid: IAHR. Available at http://www.iahr.org/membersonly/grazproceedings99/doc/000/000/267.htm Accessed 22 Feb 2012.

  5. Bansal, M. K. (1973). Atmospheric reaeration in natural streams. Water Research Bulletin, 11, 491–504.

    Article  Google Scholar 

  6. Bennett, J. P., & Rathbun, R. E. (1972). Reaeration in open channel flow. Professional paper 737. Reston: USGS.

    Google Scholar 

  7. Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkpf, J. K., Rupp, G. L., et al. (1985). Rates, constants and kinetics formulations in surface water quality modelling. EPA/600/3-85/040 (2nd ed.). Athens: U.S. Environmental Protection Agency, Environmental Research Laboratory.

    Google Scholar 

  8. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). Berlin: Springer.

    Google Scholar 

  9. Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 33, 261–304.

    Article  Google Scholar 

  10. Cetin, M. C., & Erar, A. (2002). Variable selection with Akaike information criteria: a comparative study. Hacettepe Journal of Mathematics and Statistics, 31, 89–97.

    Google Scholar 

  11. Everitt, B. S. (2002). The Cambridge dictionary of statistics (2nd ed.). London: Cambridge University Press.

    Google Scholar 

  12. Harmel, R. D., & Smith, P. K. (2007). Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. Journal of Hydrology, 337, 326–336.

    Article  Google Scholar 

  13. Hurvich, C. F., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307.

    Article  Google Scholar 

  14. Jha, R., Ojha, C. S. P., & Bhatia, K. K. S. (2001). Refinement of predictive reaeration equations for a typical India river. Hydrological Processes, 15(6), 1047–1060.

    Article  Google Scholar 

  15. Jha, R., Ojha, C. S. P., & Bhatia, K. K. S. (2007). Development of Refined BOD and DO Models for Highly Polluted Kali River in India. Journal Environmental Engineering, 133(8), 839–852.

    Article  CAS  Google Scholar 

  16. Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101–108.

    Article  Google Scholar 

  17. Langbein, W. B., & Dururn, W. H. (1967). The aeration capacity of streams. Circular S42. Reston: U.S. Geological Survey.

    Google Scholar 

  18. Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.

    Article  Google Scholar 

  19. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.

    Google Scholar 

  20. O’Connor, D. J., & Dobbins, W. E. (1958). Mechanisms of reaeration of natural streams. ASCE Transportation, 153, 641.

    Google Scholar 

  21. Omole, D. O. (2011). Reaeration coefficient modeling: case study of River Atuwara, Ota, Nigeria. Saarbrücken: LAP Lambert Academic.

    Google Scholar 

  22. Omole, D. O., & Longe, E. O. (2012). Reaeration coefficient modeling: a case study of River Atuwara in Nigeria. Research Journal of Applied Sciences Engineering and Technology, 4(10), 1237-1243.

    Google Scholar 

  23. Owens, M., Edwards, R. W., & Gibbs, J. W. (1964). Some reaeration studies in Streams. International Journal of Air and Water Pollution, 8, 469–486.

    CAS  Google Scholar 

  24. Royall, R. M. (1997). Statistical evidence: a likelihood paradigm. New York: Chapman and Hall.

    Google Scholar 

  25. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  26. Singh, J., Knapp, H. V., Arnold, J. G., & Demissie, M. (2005). Hydrologic modelling of the Iroquous River watershed using HSPF and SWAT. Journal of the American Water Resources Association, 41(2), 361–375.

    Article  Google Scholar 

  27. Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River. Public Health Bulletin No 146, Public Health Service, Washington, DC.

  28. Streeter, H. W., Wright, C. T., & Kehr, R. W. (1936). Measures of natural oxidation in polluted streams III. Sewage Works Journal, 8, 282–316.

    CAS  Google Scholar 

  29. Transparency for Nigeria. (2010). Ogun State. Available at: http://www.transparencyng.com/index.php?option=com_content&view=article&id=1632:ogun-state&catid=150&Itemid=131 Accessed 23 February 2012.

  30. Upton, J. G., & Cook, I. T. (2008). A dictionary of statistics. London: Oxford University Press.

    Google Scholar 

  31. Yadav, A. S., Gururaja, K. V., Karthik, B., Rao, G. R., Mukri, V., & Subash Chandran, M. D., et al. (2008). Ecological status of River Kali flood plain. Available at http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ces_pubs/pubs_2008/theme1_02.pdf Accessed 23 Feb 2012.

  32. Yang, Y. (2005). Can the strengths of AIC and BIC be shared? Biometrika, 92, 937–950.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the International Foundation for Science (IFS), Stockholm, Sweden, through a grant (IFS Ref: W/4852-1) to D.O. Omole. Our gratitude also goes to Covenant University, Ota and University of Lagos, for the use of their facilities during the course of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Omole.

Appendix: Data Structure and Algorithm

Appendix: Data Structure and Algorithm

Data structure:

  1. 1.

    Stat: array of records: Each record has 11 fields. Each field is a float

    Fields in a record: ICvalue, Relative_Likelihood, Relative_Likelihood_wi, Confidence, SigmaSquared, NSE, RMSE, PBIAS, RSR, PBIAS_Acceptable, NSE_Acceptable

  2. 2.

    Model_Type: array of strings. Model name is a string

  3. 3.

    Dataset_Results: array of records: Each record has four fields

    Fields in a record: Confidence_Value—array of integer, FinalModel—integer

    FinalModel_Freq—integer, CountFlag—boolean

Algorithm

figure afigure afigure afigure afigure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omole, D.O., Longe, E.O. & Musa, A.G. An Approach to Reaeration Coefficient Modeling in Local Surface Water Quality Monitoring. Environ Model Assess 18, 85–94 (2013). https://doi.org/10.1007/s10666-012-9328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9328-0

Keywords

Navigation