Skip to main content
Log in

Influence of Meteorological Factors NO2, SO2, CO and PM10 on the Concentration of O3 in the Urban Atmosphere of Eastern Croatia

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Ozone, NO2, SO2, CO, PM10 and meteorological parameters were measured simultaneously during the summer–autumn season 2007 in Osijek—the eastern, flat, agricultural part of Croatia. Fourier analysis confirms the existence of variation in ozone volume fractions with periods ranging from the usual semi-daily and daily to 7 and 28 daily cycles. The relationships between O3 and other variables were modelled in three ways: principal component analysis, multiple linear regression and principal component regression. The results of the principal component analysis detected underlying relationships among ozone concentrations and meteorological variables. An extremely simple meteorological model is suitable for the prediction of ozone levels. The meteorological factors, temperature and cloudiness played a main role in the MLR model (R 2 = 0.83). The application of the principal component regression approach confirmed that the original variables associated with the valid principal components were meteorological variables (R 2 = 0.82).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdul-Wahab, S. A., Bouhamra, W., Ettouney, H., Sowerby, B., & Crittenden, B. D. (1996). Predicting ozone levels: a statistical model for predicting ozone levels. Environmental Science and Pollution Research, 3, 195–204.

    Article  CAS  Google Scholar 

  2. Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.

    Article  Google Scholar 

  3. Altshuler, S. L., Arcado, T. D., & Lawson, D. R. (1995). Weekday vs. weekend ambient ozone concentration: discussion and hypotheses with focus on Northern California. Journal of the Air & Waste Management Association, 45, 967–972.

    CAS  Google Scholar 

  4. Beaney, G., & Gough, W. A. (2002). The influence of tropospheric ozone on the air temperature of the city of Toronto, Ontario, Canada. Atmospheric Environment, 36, 2319–2325.

    Article  CAS  Google Scholar 

  5. Bröniman, S., & Neu, U. (1997). Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmospheric Environment, 31(8), 1127–1135.

    Article  Google Scholar 

  6. Barrero, M. A., Grimalt, J. O., & Cantón, L. (2006). Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometrics and Intelligent Laborary Systems, 80, 67–76.

    Article  CAS  Google Scholar 

  7. Butković, V., Cvitaš, T., Džepina, K., Kezele, N., & Klasinc, L. (2002). Long-term ozone data analysis. Croatica Chemica Acta, 75(4), 927–933.

    Google Scholar 

  8. Council Directive 2002/3EC. (2002). Relating to ozone in ambient air. Official Journal of the European Communities, L, 67, 14–30.

    Google Scholar 

  9. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. The Science of the Total Environment, 299, 97–113.

    Article  Google Scholar 

  10. Felipe-Sotelo, M., Gustems, L., Hernández, I., Terrado, M., & Tauler, R. (2006). Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North–East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmospheric Environment, 40, 7421–7436.

    Article  CAS  Google Scholar 

  11. Katsoulis, B. D. (1996). The relationship between synoptic, mesoscale and microscale meteorological parameters during poor air quality events in Athens, Greece. The Science of the Total Environment, 181, 13–24.

    Article  CAS  Google Scholar 

  12. Kovač-Andrić, E., Brana, J., & Gvozdić, V. (2009). Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4, 117–122.

    Article  Google Scholar 

  13. Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57, 889–896.

    Article  CAS  Google Scholar 

  14. Malec, L., & Skácel, F. (2008). Analyzing ground ozone formation regimes using a principal axis factoring method: a case study of Kladno (Czech Republic) industrial area. Atmósfera, 21(3), 249–263.

    Google Scholar 

  15. Marković, M. D., & Marković, D. A. (2005). The realtionship between some meteorological parameters and the tropospheric concentrations of ozone in the urban area of Belgrade. Journal of the Serbian Chemical Society, 70(12), 1487–1495.

    Article  Google Scholar 

  16. Olszyna, K. J., Luria, M., & Meagher, J. F. (1997). The correlation of temperature and rural ozone levels in southeastern U.S.A. Atmospheric Environment, 31, 3011–3022.

    Article  CAS  Google Scholar 

  17. Paden, D. B., Setzer, R. W., & Dewlin, R. B. (1995). Ozone exposure has both a priming effect on allergen-induced responses as well as an intrinsic inflammatory action in the nasal airways of perennially allergic asthmatics. American Journal of Respiratory and Critical Care Medicine, 151(5), 1336–1345.

    Google Scholar 

  18. Poissant, L., Bottenheim, J. W., Roussel, P., Reid, N. W., & Niki, H. (1996). Multivariate analysis of a 1992 Sontos data subset. Atmospheric Environment, 30, 2133–2144.

    Article  CAS  Google Scholar 

  19. Shutters, S. T., & Balling, R. C. (2006). Weekly periodicity of environmental variables in Phoenix, Arizona. Atmospheric Environment, 40, 304–310.

    Article  CAS  Google Scholar 

  20. Soja, G., & Soja, A. M. (1999). Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network models. Atmospheric Environment, 33, 4299–4307.

    Article  CAS  Google Scholar 

  21. Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment, 32(6), 1087–1095.

    Article  CAS  Google Scholar 

  22. Tarasova, O. A., & Karpetchko, A. Y. (2003). Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics Disscusions, 3, 655–676.

    Article  Google Scholar 

  23. Vandeginste, B. G. M., Massart, D. L., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1998). Handbook of chemometrics and qualimetrics, part B (pp. 88–160). Amsterdam: Elsevier.

    Google Scholar 

  24. Wilks, S. D. (2006). Statistical methods in the atmospheric sciences (2nd ed., pp. 371–508). Amsterdam: Elsevier.

    Google Scholar 

  25. Žabkar, J., Žabkar, A., Vladušič, D., Čemas, D., Šuc, D., & Bratko, I. (2006). Q2 Prediction of ozone concentrations. Ecological Modelling, 191, 68–82.

    Article  Google Scholar 

  26. Yamartino, R. J. (1984). A comparison of several “Single-Pass” estimators of the standard deviation of wind direction. Journal of Applied Meteorology and Climatology, 23, 1362–1366.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given to the project by the Croatian Ministry of Science, Education and Sports (grant no. 098-0982915-2947). The authors also thank the Ruđer Bošković Institute, the Meteorological and Hydrological Service of Croatia and the Ministry of Environmental Protection, Physical Planning and Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlatka Gvozdić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdić, V., Kovač-Andrić, E. & Brana, J. Influence of Meteorological Factors NO2, SO2, CO and PM10 on the Concentration of O3 in the Urban Atmosphere of Eastern Croatia. Environ Model Assess 16, 491–501 (2011). https://doi.org/10.1007/s10666-011-9256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9256-4

Keywords

Navigation