Environmental Modeling & Assessment

, Volume 15, Issue 6, pp 469–486 | Cite as

Optimal Site Selection of Watershed Hydrological Monitoring Stations Using Remote Sensing and Grey Integer Programming

  • Ni-Bin Chang
  • Ammarin Makkeasorn


Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are all intimately related with each other to form water balance dynamics on the surface of the Earth. To monitor change in hydrological systems with minimum effort, however, hydrological monitoring networks at the watershed scale should be deployed at critical locations to advance the monitoring and sensing capability. One of the science questions is how to develop an optimum arrangement/distribution strategy of those monitoring platforms with respect to hydrological components subject to technical and resources constraints. While the complexities arise from the integration of highly heterogeneous data streams in the hydrological cycle under uncertainty, there is an acute need to develop a site screening and sequencing procedure permitting a cost-effective search for final site selection. This paper purports to develop such an approach to address the optimal site selection strategy by integrating satellite remote sensing images with a grey integer programming (GIP) model. The approach uses spatial information on the range of likely values temporally encountered for a number of biophysical descriptors in support of the optimization analysis under uncertainty. Practical implementation was assessed by a case study in a semi-arid watershed—the Choke Canyon Reservoir watershed, south Texas. GIS-based GIP modeling technique successfully supports the screening and sequencing mechanism based on the composite satellite images, which smoothly prioritizes the relative importance and provides the rank order scores across all candidate sites. With the aid of such a synergistic approach, seven locations out of 563 candidate sites were eventually selected and confirmed by a field investigation.


Hydrological monitoring Water cycle Vegetation indexes Remote sensing Grey integer programming Locational theory 


  1. 1.
    Baghdadi, N., King, C., Chanzy, A., & Wigneron, J. P. (2002). An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils. International Journal of Remote Sensing, 23(20), 4325–4340. doi: 10.1080/01431160110107671.CrossRefGoogle Scholar
  2. 2.
    Basak, I. & Satty, T. (1993). Group decision making using the analytical hierarchy process. Mathematical and Computer Modelling, 17(4–5), 101–109. doi: 10.1016/0895-7177(93)90179-3.CrossRefGoogle Scholar
  3. 3.
    Bellman, R. & Zadeh, L. A. (1970). Decision-making in fuzzy environment. Management Science, 17, 141–164. doi: 10.1287/mnsc.17.4.B141.CrossRefGoogle Scholar
  4. 4.
    Belton, V. & Gear, T. (1983). On a short-coming of Satty’s method of analytic hierarchies. Omega—International Journal of Management Science, 11, 228–230.CrossRefGoogle Scholar
  5. 5.
    Ben-Jemaa, F., Marino, M. A., & Loaiciga, H. A. (1995). Sampling design for contaminant distribution in lake sediments. Journal of Water Resources Planning and Management, 121(1), 71–79. doi: 10.1061/(ASCE)0733-9496(1995)121:1(71).CrossRefGoogle Scholar
  6. 6.
    Chang, N. B., Chen, Y. L., & Wang, S. F. (1997). A fuzzy interval multi-objective mixed integer programming approach for the optimal planning of metropolitan solid waste management system. Fuzzy Sets and Systems, 89(1), 35–60. doi: 10.1016/S0165-0114(96)00086-3.CrossRefGoogle Scholar
  7. 7.
    Chang, N. B., Ning, S. K., & Chen, J. C. (2006). Multi-criteria relocation strategy of offsite radioactive monitoring network for a nuclear power plant. Environmental Management, 38(2), 197–217. doi: 10.1007/s00267-005-0007-7.CrossRefGoogle Scholar
  8. 8.
    Chang, N. B. & Tseng, C. C. (2001). Assessing relocation strategy of urban air quality monitoring network by compromise programming. Environment International, 26, 524–541.Google Scholar
  9. 9.
    Chang, N. B., Wen, C. G., Chen, Y. L., & Yong, Y. C. (1996). Optimal planning of the reservoir watershed by grey fuzzy multi-objective programming (I): Theory. Water Research, 30(10), 2329–2334. doi: 10.1016/0043-1354(96)00124-8.CrossRefGoogle Scholar
  10. 10.
    Chang, N. B., Wen, C. G., Chen, Y. L., & Yong, Y. C. (1996). Optimal planning of the reservoir watershed by grey fuzzy multi-objective programming (II): Application. Water Research, 30(10), 2335–2340. doi: 10.1016/0043-1354(96)00125-X.CrossRefGoogle Scholar
  11. 11.
    Christensen, E. R., Phoomiphakdeephan, W., & Razak, A. (1997). Water quality in Milwaukee, Wisconsin versus intake crib location. Journal of Environmental Engineering, 123(5), 492–498. doi: 10.1061/(ASCE)0733-9372(1997)123:5(492).CrossRefGoogle Scholar
  12. 12.
    City of Corpus Christi (not dated). Lake of Corpus Christi & Choke Canyon Reservoir. accessed October 2003.
  13. 13.
    Dixon, W., Smyth, G. K., & Chiswell, B. (1999). Optimized selection of river sampling sites. Water Research, 33(4), 971–978. doi: 10.1016/S0043-1354(98)00289-9.CrossRefGoogle Scholar
  14. 14.
    Dubois, P. C., van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926. doi: 10.1109/36.406677.CrossRefGoogle Scholar
  15. 15.
    Dyer, J. S. (1990). A clarification of remarks on the analytic hierarchy process. Management Science, 36, 274–275. doi: 10.1287/mnsc.36.3.274.CrossRefGoogle Scholar
  16. 16.
    Earth System Science Center (ESSC).(2002). Soil Information for Environmental Modeling and Ecosystem Management, Penn State University. Accessed September 2003.
  17. 17.
    Egmond, N. D. V. & Onderdelinden, D. (1981). Objective analysis of air pollution monitoring network data: Spatial interpolation and network density. Atmospheric Environment, 15(6), 1035–1045. doi: 10.1016/0004-6981(81)90104-9.CrossRefGoogle Scholar
  18. 18.
    EROS Data Center.(2003). Band Designations. satellite/band.html. Accessed November, 2003.
  19. 19.
    Eynon, B. P. (1988). Statistical analysis of precipitation chemistry measurements over the Eastern United States. Part II: Kriging analysis of regional patterns and trends. Journal of Applied Meteorology, 27(12), 1334–1343. doi: 10.1175/1520-0450(1988)027<1334:SAOPCM>2.0.CO;2.CrossRefGoogle Scholar
  20. 20.
    Glenn, N. F. & Carr, J. R. (2003). The use of geostatistics in relating soil moisture to RADASAT-1 SAR data obtained over the Great Bason, Nevada, USA. Computers & Geosciences, 29, 577–586. doi: 10.1016/S0098-3004(03)00050-5.CrossRefGoogle Scholar
  21. 21.
    Glenn, N. F. & Carr, J. R. (2004). The effects of soil moisture on synthetic aperture radar delineation of geomorphic surfaces in the Great Basin, Nevada, USA. Journal of Arid Environments, 56(4), 643–657. doi: 10.1016/S0140-1963(03)00085-5.CrossRefGoogle Scholar
  22. 22.
    Global Land Biosphere Data and Resources.(1999). Normalized Difference Vegetation Index. Accessed November 2003.
  23. 23.
    Grayson, R. B., Western, A. W., Chiew, F. H. S., & Blöschl, G. (1997). Preferred states in spatial soil moisture patterns, local and non local controls. Water Resources Research, 33(12), 2897–2908. doi: 10.1029/97WR02174.CrossRefGoogle Scholar
  24. 24.
    Grayson, R. B., Western, A. W., Wilson, D. J., Young, R. I., McMahon, T. A., Woods, R. A., et al. (1999). Measurement and interpretation of soil moisture for hydrological applications, Proceedings of water 99 joint congress 25th hydrology and water resources symposium and second international conference on water resources and environment research, vol. 1 (pp. 5–9). Brisbane: Institution of Engineers Australia.Google Scholar
  25. 25.
    Guswa, D. J., Celia, A., & Rodriguez-Iturbe, I. (2002). Models of soil moisture dynamics in ecohydrology: Comparative study. Water Resources Research, 38(9), 1166. doi: 10.1029/2001WR000826.CrossRefGoogle Scholar
  26. 26.
    Harmancioglu, N. B. & Alpaslan, N. (1992). Water quality monitoring network design: A problem of multi-objective decision marking. Water Resources Bulletin, 28(1), 179–192.Google Scholar
  27. 27.
    Harmancioglu, N. B., Fistikoglu, O., Ozkul, S. D., Singh, V. P., & Alpaslan, M. N. (1999). Water quality monitoring network design. Dordrecht: Kluwer Academic.Google Scholar
  28. 28.
    Homer, C., Huang, C., Yang, L., Wylie, B., Coan, M (not dated). Development of a 2001 National Landcover Database for the United States, report. SAIC Corporation, USGS/EROS Data Center, Sioux Falls, SD 57198, USA.Google Scholar
  29. 29.
    Huang, G. H., Baetz, B. W., & Patry, G. G. (1992). A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 9, 319–335. doi: 10.1080/02630259208970657.CrossRefGoogle Scholar
  30. 30.
    Huang, G. H., Baetz, B. W., & Patry, G. G. (1995). Grey integer programming: an application to waste management planning under uncertainty. European Journal of Operational Research, 83(3), 594–620. doi: 10.1016/0377-2217(94)00093-R.CrossRefGoogle Scholar
  31. 31.
    Huang, G. H. & Moore, R. D. (1993). Grey linear programming, its solving approach, and its application to water pollution control. International Journal of Systems Science, 24(1), 159–172. doi: 10.1080/00207729308949477.CrossRefGoogle Scholar
  32. 32.
    Hudak, P. F., Loaiciga, H. A., & Marino, M. A. (1995). Regional-scale ground water quality monitoring via integer programming. Journal of Hydrology (Amsterdam), 164, 153–170. doi: 10.1016/0022-1694(94)02559-T.CrossRefGoogle Scholar
  33. 33.
    Huete, A., Justice, C., & Leeuwen, W. V. (1999). MODIS vegetation index (MOD 13): Algorithm theoretical basis document, version 3. Tucson: University of Arizona. 129.Google Scholar
  34. 34.
    Hughes, J. P. & Lettenmaier, D. P. (1981). Data requirements for Kriging—Estimation and network design. Water Resources Research, 17(6), 1641–1650. doi: 10.1029/WR017i006p01641.CrossRefGoogle Scholar
  35. 35.
    Jackson, R. D., Slater, P. N., & Pinter, P. J. (1983). Discrimination of growth and water stress in wheat by various vegetation indices through a clear and a turbid atmosphere. Remote Sensing of Environment, 13, 187–208. doi: 10.1016/0034-4257(83)90039-1.CrossRefGoogle Scholar
  36. 36.
    Jager, H. I., Sale, M. J., & Schmoyer, R. L. (1990). Co-kriging to assess regional stream quality in the southern blue ridge province. Water Resources Research, 26(7), 1401–1412.CrossRefGoogle Scholar
  37. 37.
    Knyazikhin, Y., Glassy, J., Privette, J. L., Tian, Y., Lotsch, A., Zhang, Y., et al. (1999). MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document. Accessed December 2006.
  38. 38.
    Kwok, R., Cunningham, G. F. (2000). RADASAT Geophysical Processor System Data User’s Handbook. NASA, JPL. JPL D-19149.Google Scholar
  39. 39.
    Lacoul, M., Honda, K., Yokoyama, R., Saito, G. (not dated). Monitoring and Assessing Rice Crop with Multi-temporal RADASAT Fine beam mode data in Pathumthani and Ayuatthaya Province of Thailand. Asian Center for Research on Remote Sensing (ACRoRS), School of Advanced Technonlogies, Asian Institute of Technology, Pathumthani, Thailand.Google Scholar
  40. 40.
    Land Processes Distributed Active Archive Center (LP DAAC).(2006). MODIS Data Products. USGS–NASA Distributed Active Archive Center. Accessed 16 February 2006.
  41. 41.
    LINDO Systems Inc.(2006). Accessed January 2006.
  42. 42.
    Lo, S. L., Kuo, J. T., & Wang, S. M. (1996). Water quality monitoring network design of Keelung River, northern Taiwan. Water Science and Technology, 34(12), 49–57. doi: 10.1016/S0273-1223(96)00853-0.CrossRefGoogle Scholar
  43. 43.
    Makkeasorn, A. & Chang, N. B. (2009). Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. Journal of Environmental Management, 90(2), 1069–1080. doi: 10.1016/j.jenvman.2008.04.004.CrossRefGoogle Scholar
  44. 44.
    Makkeasorn, A., Chang, N. B., Beaman, M., Wyatt, C., & Slater, C. (2006). Soil moisture estimation in a semi-arid watershed using RADARSAT-1 satellite imagery and genetic programming. Water Resources Research, 42, 1–15. doi: 10.1029/2005WR004033.CrossRefGoogle Scholar
  45. 45.
    McElroy, J. L., Behar, J. V., Meyers, T. C., & Liu, M. K. (1986). Methodology for designing air quality monitoring networks II: Application to Las Vegas, Nevada, for carbon monoxide. Environmental Monitoring and Assessment, 6(1), 13–34. doi: 10.1007/BF00394285.CrossRefGoogle Scholar
  46. 46.
    Modak, P. M. & Lohani, B. N. (1985). Optimization of ambient air quality monitoring networks: Part I. Environmental Monitoring and Assessment, 5, 1–19. doi: 10.1007/BF00396391.CrossRefGoogle Scholar
  47. 47.
    Modak, P. M. & Lohani, B. N. (1985). Optimization of ambient air quality monitoring networks: Part II. Environmental Monitoring and Assessment, 5, 21–38. doi: 10.1007/BF00396392.CrossRefGoogle Scholar
  48. 48.
    Modak, P. M. & Lohani, B. N. (1985). Optimization of ambient air quality monitoring networks: Part III. Environmental Monitoring and Assessment, 5, 39–53. doi: 10.1007/BF00396393.CrossRefGoogle Scholar
  49. 49.
    Moran, M. S., Hymer, D. C., Qi, J., & Sano, E. E. (2000). Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland. Agricultural and Forest Meteorology, 105, 69–80. doi: 10.1016/S0168-1923(00)00189-1.CrossRefGoogle Scholar
  50. 50.
    Myneni, R., Knyazikhin, Y., Glassy, J., Votava, P., & Shabanov, N. (2003). User’s Guide: FPAR, LAI (ESDT: MOD15A2) 8-day Composite NASA MODIS Land Algrithm. USA: Boston University. 17.Google Scholar
  51. 51.
    National Climate Data Center (NCDC).(2006). Normals, Means, and Extremes, San Antonio, TX (SAT), report, NCDC Ashville, NCGoogle Scholar
  52. 52.
    National Research Council (NRC). (2008). Integrating multiscale observations of U.S. waters. Washington: National Academic.Google Scholar
  53. 53.
    National Weather Service.(2007). RFC Use of PRISM Data. National Oceanic and Atmospheric Administration. Accessed January 2007.
  54. 54.
    Ning, S. K. & Chang, N. B. (2002). Multi-objective, decision-based assessment of a water quality monitoring network in a river system. Journal of Environmental Monitoring, 4, 121–126. doi: 10.1039/b107041j.CrossRefGoogle Scholar
  55. 55.
    Ning, S. K. & Chang, N. B. (2005). Screening and sequencing analysis for the relocation of water quality monitoring network by stochastic compromise programming. Journal of the American Water Resources Association, 41(5), 1039–1052. doi: 10.1111/j.1752-1688.2005.tb03784.x.CrossRefGoogle Scholar
  56. 56.
    Odem, K. R. (2004). Optimizing a sampling network using multivariate statistics in a simulated annealing algorithm. Ph.D. Dissertation, University of Tennessee, Knoxville, TN.Google Scholar
  57. 57.
    Oeltjenbruns, H., Kolarik, W. J., & Kirschner, R. S. (1995). Strategic planning in manufacturing systems—AHP application to an equipment replacement decision. International Journal of Production Economics, 38, 189–197. doi: 10.1016/0925-5273(94)00092-O.CrossRefGoogle Scholar
  58. 58.
    Olmsted, C. (1993). Alaska SAR Facility Scientific SAR User’s Guide. University of Alaska Fairbanks, Geophysical Institute. ASF-SD-003.Google Scholar
  59. 59.
    Pardo-Iguzquiza, E. (1998). Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology, 210(1–4), 206–220.CrossRefGoogle Scholar
  60. 60.
    Pickett, E. E. & Whiting, R. G. (1981). The design of cost-effective air quality monitoring networks. Environmental Monitoring and Assessment, 1, 59–74. doi: 10.1007/BF00836876.CrossRefGoogle Scholar
  61. 61.
    PRISM Group.(2006). PRISM products, Oregon State Service, Oregon State University. Accessed September 2006.
  62. 62.
    Ramanathan, R. & Ganesh, L. S. (1995). Using AHP for resource allocation problems. European Journal of Operational Research, 80, 410–417. doi: 10.1016/0377-2217(93)E0240-X.CrossRefGoogle Scholar
  63. 63.
    Romshoo, S. A., Nakaekawa, T., Koike, M., Musaike, K. (1999). Soil Moisture Determination Under Different Field Conditions Using a Scatterometer and Space Borne SAR Systems. Accessed September 2003.
  64. 64.
    Roth, C. H., Malicki, M. A., & Plagge, R. (1992). Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Journal of Soil Science, 43, 1–13. doi: 10.1111/j.1365-2389.1992.tb00115.x.CrossRefGoogle Scholar
  65. 65.
    Salgado, H., Genova, L., Brisco, B., & Bernier, M. (2001). Surface soil moisture estimation in Argentina using RADASAT-1 imagery. Canadian Journal of Remote Sensing, 27(6), 685–690.Google Scholar
  66. 66.
    Satty, T. L. (1980). The analytic hierarchy process—Planning, priority setting, resource allocation. New York: McGraw-Hill.Google Scholar
  67. 67.
    Satty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 23(7), 841–855. doi: 10.1287/mnsc.32.7.841.CrossRefGoogle Scholar
  68. 68.
    Satty, T. L. (1990). Exposition of AHP in reply to Dyer. Management Science, 36, 259–268. doi: 10.1287/mnsc.36.3.259.CrossRefGoogle Scholar
  69. 69.
    Satty, T. L. (1994). Fundamentals of decision making and priority theory with the analytical hierarchy process. Pittsburgh: RWS.Google Scholar
  70. 70.
    Song, J., Wesely, M. L., Lemone, M. A., & Grossman, R. L. (2000). Estimating watershed evapotranspiration with PASS. Part II: Moisture budgets during drydown periods. Journal of Hydrometeorology, 1(5), 462–473. doi: 10.1175/1525-7541(2000)001<0462:EWEWPP>2.0.CO;2.CrossRefGoogle Scholar
  71. 71.
    Spectrum Technologies, Inc. (not dated). Field Scout™ TDR 300 Soil Moisture Meter, User’s Manual: catalog # 6430FS.Google Scholar
  72. 72.
    Timmerman, J. G., Adriaanse, M., Breukel, R. M. A., van Oirschot, M. C. M., & Ottens, J. J. (1997). Guidelines for water quality monitoring and assessment of transboundary rivers. European Water Pollution Control, 7(5), 21–30.Google Scholar
  73. 73.
    Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. doi: 10.1029/WR016i003p00574.CrossRefGoogle Scholar
  74. 74.
    Tseng, C. C. & Chang, N. B. (2001). Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming. Environment International, 26, 523–541. doi: 10.1016/S0160-4120(01)00036-8.CrossRefGoogle Scholar
  75. 75.
    Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. doi: 10.1016/0034-4257(79)90013-0.CrossRefGoogle Scholar
  76. 76.
    Tucker, C. J., Newcomb, W. W., Los, S. O., & Prince, S. D. (1991). Mean and inter-year variation of growing season normalized difference vegetation index for the Sahel 1981–1989. International Journal of Remote Sensing, 12, 1133–1135. doi: 10.1080/01431169108929717.CrossRefGoogle Scholar
  77. 77.
    Tummala Rao, V. M., Chin, K. S., & Ho, S. H. (1997). Assessing success factors for implementing CE: A case study in Hong Kong electronics industry by AHP. International Journal of Production Economics, 49, 265–283. doi: 10.1016/S0925-5273(97)00016-9.CrossRefGoogle Scholar
  78. 78.
    U.S. Geological Survey (USGS).(2001). National Land Cover Data (NLCD). Accessed October 2003.
  79. 79.
    U.S. Geological Survey (USGS).(2005). Real-time data for Texas. Accessed April 2005.
  80. 80.
    Ulaby, F. (1974). Radar measurement of soil moisture content. IEEE Transactions on Antennas and Propagation, 22(2), 257–265. doi: 10.1109/TAP.1974.1140761.CrossRefGoogle Scholar
  81. 81.
    Venkatram, A. (1988). On the use of Kriging in the spatial analysis of acid precipitation data. Atmospheric Environment, 22(9), 1963–1975. doi: 10.1016/0004-6981(88)90086-8.CrossRefGoogle Scholar
  82. 82.
    Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2001). One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. Journal of Hydrometeorology, 2(4), 356–373. doi: 10.1175/1525-7541(2001)002<0356:ODSMPR>2.0.CO;2.CrossRefGoogle Scholar
  83. 83.
    Wan, Z. (1999). MODIS land-surface temperature algorithm theoretical basis document, version 3.3, NAS5-31370, Institute for Computational Earth System Science (p. 77). Santa Barbara: University of California.Google Scholar
  84. 84.
    Western, A. W., Duncan, M. J., Olszak, C., Thompson, J., Anderson, T., Grayson, R. B., et al. (2001). Calibration of CS615 and TDR instruments for MARVEX, tarrawarra and point Nepean soils. In C. H. Dowding (Ed.), TDR 2001: The second international symposium and workshop on time domain reflectometry for innovative geotechnical applications (pp. 95–108). Evanston: Infrastructure Technology Institute at Northwestern University.Google Scholar
  85. 85.
    Western, A. W. & Grayson, R. B. (1998). The Tarrawarra data set: Soil moisture patterns, soil characteristics and hydrological flux measurements. Water Resources Research, 34(10), 2765–2768. doi: 10.1029/98WR01833.CrossRefGoogle Scholar
  86. 86.
    Wilson, D., Western, A. W., Grayson, R. B., Berg, A. A., Lear, M. S., Rodell, M., et al. (2003). Spatial distribution of soil moisture over 6 and 30 cm depth, Machurangi river catchment, New Zealand. Journal of Hydrology (Amsterdam), 276, 254–274. doi: 10.1016/S0022-1694(03)00060-X.CrossRefGoogle Scholar
  87. 87.
    Zadeh, L. I. (1965). Fuzzy Sets. Information and Control, 8, 338–353. doi: 10.1016/S0019-9958(65)90241-X.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations