Metal contents in coastal waters of San Jorge Bay, Antofagasta, northern Chile: a base line for establishing seawater quality guidelines

  • Jorge Valdés
  • Domingo Román
  • Lidia Rivera
  • Juan Ávila
  • Pedro Cortés


We measured the concentration of 12 metals in coastal waters of seven sites of San Jorge Bay in Antofagasta (northern Chile), in order to relate the presence of metals with the different uses of San Jorge Bay coastal border, and to evaluate the quality of the bay’s bodies of water according to the proposed current Chilean Quality Guide for trace elements in seawater (CONAMA 2003). The results suggest that the coastal water of San Jorge Bay has very good quality according to the proposed regulation mentioned above. However, the distribution of metals such as Cu and Pb along the bay’s coast line evidences a notorious effect of the industrial activity, which would involve different behavior patterns for some trace elements in some bodies of water, suggesting that the levels indicated in the environmental guideline of the Chilean legislation do not represent pollution-free environments.


Trace metals Marine waters Antofagasta Chile 


  1. Abdullah, M. I., Shiyu, Z., & Mosgren, K. (1995). Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway. Marine Pollution Bulletin, 31(1–3), 116–126.CrossRefGoogle Scholar
  2. Alonso, H., Campano, P., & Collado, I. (1998). Determinación de elementos trazas en sedimentos de la bahía San Jorge, región de Antofagasta, mediante un proceso de extracción secuencial. Resultados preliminares. V Congreso Geológico Chileno, Tomo II, E139–E156.Google Scholar
  3. ANZECC (2000). Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra.Google Scholar
  4. Bloom, N. S., & Crecelius, E. A. (1983). Determination of mercury in seawater at sub-nanogram per liter levels. Marine Chemistry, 14, 49–59.CrossRefGoogle Scholar
  5. CONAMA (2003). Proyecto definitivo de normas de calidad primaria para la protección de las aguas marinas, (p. 20). Santiago, Chile: Comisión Nacional de Medioambiente.Google Scholar
  6. Cooper, K., & Rees, H. L. (2002). Review of standard operating procedures (SOPs). Sci. Ser., Aquat. Environ. Prot.: Analyt. Meth., CEFAS Lowestoft, (13), 57 pp.Google Scholar
  7. Currie, L. A. (1999). Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta, 391, 105–126.CrossRefGoogle Scholar
  8. Dedina, J., & Tsalev, D. L. (1995). Hydride generation atomic absorption spectrometry. In J. D. Winefordner (Ed.), Chemical analysis: A series of monographs on analytical chemistry and its applications (Vol. 130, Chapter 13, pp. 308–350). Chichester: Wiley.Google Scholar
  9. Escribano, R., & Rodríguez, L. (1995). Seasonal size variation and growth of Calanus chilensis Brodsky in northern Chile. Revista Chilena de Historia Natural, 68, 373–382.Google Scholar
  10. Escribano, R., & Hidalgo, P. (2001). Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. Journal of Marine Biology, 80, 1–8.Google Scholar
  11. Escribano, R., Rodriguez, L., & Irribarren, C. (1995). Temporal variability of sea temperature in bay of Antofagasta, Northern Chile. Estudios Oceanologicos, 14, 39–47.Google Scholar
  12. Escribano, R., Marín, V., Hidalgo, P., & Olivares, G. (2002). Physical–biological interactions. In the pelagic ecosystem of the nearshore zone of the northern Humboldt current system. In J. Castilla, & J. Larger (Eds.), The oceanography and ecology of the nearshore and bays in Chile (pp. 145–175). Santiago: Universidad Católica de Chile Press.Google Scholar
  13. Estela, J. M., Tomás, C., Cladera, A., & Cerdà, V. (1995). Potentiometric stripping analysis: A review. Critical Reviews in Analytical Chemistry, 25, 91–141.CrossRefGoogle Scholar
  14. Gardner, M. J., & Gunn, A. M. (1986). Optimizing precision in standard addition determination. Fresenius’ Journal of Analytical Chemistry, 325, 263–266.CrossRefGoogle Scholar
  15. Gáspar, A., Sógor, C., & Posta, J. (1999). Possibilities for the simultaneous preconcentration and flame atomic absorption spectrometric determination of Cr(III) and Cr(VI) using C18 column and sorption loop. Fresenius’ Journal of Analytical Chemistry, 363, 480–483.Google Scholar
  16. Jones, B. R., & Laslett, R. E. (1994). Methods for analysis for trace metals in marine and other samples. Aquat. Environ. Prot.: Analyt. Meth., MAFF Direct. Fish. Res., Lowestoft, (11), 29 pp.Google Scholar
  17. Labar, C., Müller, R., & Lamberts, L. (1991). Studies on film potentiometric stripping analysis: Effects of electrochemical parameters. Electrochimica Acta, 36, 2103–2108.CrossRefGoogle Scholar
  18. Ladakis, M., Dassenakis, M., Scoullos, M., & Belias, C. (2007). The chemical behaviour of trace metals in a small, enclosed and shallow bay on the coast of Attika, Greece. Desalination, 213, 29–37.CrossRefGoogle Scholar
  19. Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C., & Gonzalez, J. (2007). Trace metals assessment in water, sediment, mussel and seagrass species—Validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere, 68, 2033–2039.CrossRefGoogle Scholar
  20. Lee, M. R., Correa, J. C., & Zhang, H. (2002). Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into coastal waters of the Atacama region of northern Chile. Marine Pollution Bulletin, 44, 956–961.CrossRefGoogle Scholar
  21. Lepez, I., Furet, L., & Aracena, O. (2001). Población de Emerita analoga (Stimpson 1957) en playas Amarilla y Rinconada, Antofagasta: Aspectos abióticos, bióticos y concentraciones de cobre. Gayana, 65(1), 59–87.Google Scholar
  22. Lo Coco, F., Menotti, P., Fiecchi, V., & Ceccon, L. (2000). Determination of lead(II) and cadmium(II) in hard and soft wheat by derivative potentiometric stripping analysis. Analytica Chimica Acta, 409, 93–98.CrossRefGoogle Scholar
  23. Lo Coco, F., Ceccon, L., Ciraolo, L., & Novelli, V. (2003). Determination of cadmium(II) and zinc(II) in olive oils by derivative potentiometric stripping analysis. Food Control, 14, 55–59.CrossRefGoogle Scholar
  24. Mayer, H., Marconi, O., Floridi, S., Montanari, L., & Fantozzi, P. (2003). Determination of Cu(II) in beer by derivative potentiometric stripping analysis. Journal of the Institute of Brewing, 109(4), 332–336.Google Scholar
  25. Medina, M., Andrade, S., Faugeron, S., Lagos, N., Mella, D., & Correa, J. (2005). Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Marine Pollution Bulletin, 50, 396–409.CrossRefGoogle Scholar
  26. Murphy, V., Tofail, S., Heghes, H., & McLoughlin, P. (2009). A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chemical Engineering Journal, 148(2–3), 425–433.CrossRefGoogle Scholar
  27. Ostapczup, P., Valenta, P., Rützel, H. W., & Nürnberg, H. (1987). Application of differential pulse anodic stripping voltammetry to the determination of heavy metals in environmental samples. Science of the Total Environment, 60, 1–16.CrossRefGoogle Scholar
  28. Psaroudakis, S. V., & Efstathiou, C. E. (1989). Applicability of gallium as copper scavenger in the determination of zinc in samples of high copper content by potentiometric stripping analysis. Analyst, 114, 25–28.CrossRefGoogle Scholar
  29. Pempkoviak, J., Chiffoleau, J., & Staniszewski, A. (2000). The vertical and horizontal distribution of selected trace metals in the Baltic Sea off Poland. Estuarine, Coastal and Shelf Science, 51, 115–125.CrossRefGoogle Scholar
  30. Riso, R. D., Le Corre, P., & Chaumery, C. J. (1997). Rapid and simultaneous analysis of trace metals (Cu, Pb, and Cd) in seawater by potentiometric stripping analysis. Analytica Chimica Acta, 351, 83–89.CrossRefGoogle Scholar
  31. Rodriguez, L., & Escribano, R. (1996). Bahía de Antofagasta y Bahía de Mejillones del Sur: Observaciones de la temperatura, penetración de la luz, biomas y composición fitoplanctonica. Estudios Oceanologicos, 15, 75–85.Google Scholar
  32. Román, D., Rivera, L., Morales, T., Ávila, J., & Cortés, P. (1997). “Determinación de Se total en agua de mar sin pre concentración mediante EAAGH. Un nuevo medio para generar el hidruro”. XXII Jornadas Chilenas de Química. Sociedad Chilena de Química. 190, Puyehue—Chile.Google Scholar
  33. Román, D. A., Rivera, L., Morales, T., Ávila, J., & Cortés, P. (2003). Determination of trace elements in environmental and biological samples using improved simple introduction in flame absorption spectrometry (HHPN-AAS; HHPN-FF-AAS). International Journal of Environmental Analytical Chemistry, 83, 327–341.CrossRefGoogle Scholar
  34. Romero, R. E. (1996). Implementación computarizada de un sistema electroanalítico para el desarrollo y aplicación de la técnica PSA bajo diversos modos. Tesis para optar al título de Ingeniero de Ejecución en Electrónica. Facultad de Ingeniería, Universidad de Antofagasta.Google Scholar
  35. Salamanca, M., Camaño, A., Jara, B., & Rodriguez, T. (2000). Cu, Pb and Zn distribution in nearshore waters in San Jorge Bay, northern Chile. Gayana, 64(2), 195–204.Google Scholar
  36. Salamanca, M., Jara, B., & Rodriguez, T. (2004). Niveles de Cu, Pb y Zn en agua y Perumytilus purpuratus en bahía San Jorge, norte de Chile. Gayana, 68(1), 53–62.Google Scholar
  37. Shahidul, I., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and síntesis. Marine Pollution Bulletin, 48, 7–8.CrossRefGoogle Scholar
  38. Shraim, A., Chiswell, B., & Olszowy, H. (1999). Speciation of arsenic by hydride generation—Atomic absorption spectrometry (HG–AAS) in hydrochloric reaction medium. Talanta, 50, 1109–1127.CrossRefGoogle Scholar
  39. Stauber, J. L., Andrade, S., Ramírez, M., Adams, M., & Correa, J. A. (2005). Copper bioavailability in a coastal environment of Northern Chile: Comparison of bioassay and analytical speciation approaches. Marine Pollution Bulletin, 50, 1363–1372.CrossRefGoogle Scholar
  40. Stoeppler, M., Burow, M., Backhaus, F., & Nürberg, H. W. (1986). Arsenic in seawater and brown algae of the Baltic and the North Sea. Marine Chemistry, 18, 321–334.CrossRefGoogle Scholar
  41. Swietlik, R. (1998). Speciation analysis of chromium in waters. Polish Journal of Environmental Studies 7(5), 257–266.Google Scholar
  42. Tang, A.-N., Jiang, D.-Q., Jiang, Y., Wang, S.-W., & Yan, X.-P. (2004). Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. Journal of Chromatography, 1036, 183–188.CrossRefGoogle Scholar
  43. US Environmental Protection Agency (2009). National recommended water quality criteria. Office of Water 4304T. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  44. Valdés, J., Román, D., Alvarez, G., Ortlieb, L., & Guiñez, M. (2008). Metals contents in surface waters of an upwelling system of the northern Humboldt Current (Mejillones Bay, Chile). Journal of Marine Systems, 71, 18–30.CrossRefGoogle Scholar
  45. Valdés, J., Román, D., Guiñez, M., Rivera, L., Morales, T., Ávila, J., et al. (2010). Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile. Environmental, Monitoring and Assessment, 167, 185–197.CrossRefGoogle Scholar
  46. Wang, J. (1994). Analytical electrochemistry. USA: VCH Publisher Inc.Google Scholar
  47. Winefordner, J. D., & Long, G. L. (1983). Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry, 55, 712A–724A.CrossRefGoogle Scholar
  48. Xie, X. (2005). Assessment of an ultramicroelectrode array (UMEA) sensor for the determination of trace concentrations of heavy metals in water (pp. 1–153). PhD Dissertation, Universität Karlsruhe, Schriftenreihe des Institut für Mineralogie und Geochemie, Germany.Google Scholar
  49. Yarincik, K., Murria, R., Linz, T., & Peterson, L. (2000). Climatically controlled eolian and hemipelagic deposition in the Cariaco Basin, Venezuela over the past 578,000 years: Results from Al/Ti and K/Al. Paleoceanography, 15(6), 210–228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jorge Valdés
    • 1
  • Domingo Román
    • 2
  • Lidia Rivera
    • 2
  • Juan Ávila
    • 2
  • Pedro Cortés
    • 2
  1. 1.Laboratorio de Sedimentología y Paleoambientes, Instituto de Investigaciones Oceanológicas, Facultad de Recursos del MarUniversidad de AntofagastaAntofagastaChile
  2. 2.Laboratorio de Química Bio-Inorgánica y Analítica Ambiental, Departamento de Química, Facultad de Ciencias BásicasUniversidad de AntofagastaAntofagastaChile

Personalised recommendations