Skip to main content
Log in

Elasticity with Hierarchical Disarrangements: A Field Theory That Admits Slips and Separations at Multiple Submacroscopic Levels

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The complexity and variety of geometrical changes in physical systems at submacroscopic levels has led to various approaches to the broadening of the classical theory of finite elasticity. One approach, the field theory “elasticity with disarrangements”, employed the multiscale geometry of structured deformations in order to incorporate the effects of disarrangements such as slips and separations at a single submacroscopic level on the macroscopic response of a continuous body. This article extends that field theory by enriching the underlying geometry so as to include the effects of disarrangements at more than one submacroscopic level. The resulting field theory broadens the scope of this approach, sharpens the description of the physical nature of dissipative mechanisms that can arise, and increases the variety of systems of contact forces that can serve as boundary loadings for a body that evolves via multiscale geometrical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baia, M., Matias, J., Santos, P.M.: A relaxation result in the framework of structured deformation in a bounded variation setting. Proc. R. Soc. Edinb. A 142(2), 239–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barroso, A.C., Matias, J., Morandotti, M., Owen, D.R.: Second-order structured deformations: relaxation, integral representation and applications. Arch. Ration. Mech. Anal. 225, 1025–1072 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barroso, A.C., Matias, J., Morandotti, M., Owen, D.R.: Explicit formulas for relaxed disarrangement densities arising from structured deformations. Math. Mech. Complex Syst. 5, 163–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertoldi, K., Bigoni, D., Drugan, W.J.: Nacre: an orthotropic and bimodular elastic material. Compos. Sci. Technol. 68, 1363–1375 (2008)

    Article  Google Scholar 

  5. Carita, G., Matias, J., Morandotti, M., Owen, D.R.: Dimension reduction in the context of structured deformations. J. Elast. (2018). https://doi.org/10.1007/s10659-018-9670-9

    MathSciNet  Google Scholar 

  6. Chen, Q., Pugno, N.M.: Bio-mimetic mechanisms of natural hierarchical materials: a review. J. Mech. Behav. Biomed. Mater. 19, 3–33 (2013)

    Article  Google Scholar 

  7. Choksi, R., Fonseca, I.: Bulk and interfacial energy densities for structured deformations of continua. Arch. Ration. Mech. Anal. 138, 37–103 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choksi, R., Del Piero, G., Fonseca, I., Owen, D.R.: Structured deformations as energy minimizers in some models of fracture and hysteresis. Math. Mech. Solids 4, 321–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daniels, H.E.: The statistical theory of the strength of bundles of threads I. Proc. R. Soc. A 183(995) (1945). https://doi.org/10.1098/rspa.1945.0011

  11. Del Piero, G.: Limit analysis and no-tension materials. Int. J. Plast. 14, 259–271 (1998)

    Article  MATH  Google Scholar 

  12. Del Piero, G., Owen, D.R.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124, 99–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Del Piero, G., Owen, D.R.: Integral-gradient formulae for structured deformations. Arch. Ration. Mech. Anal. 131, 121–138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Del Piero, G., Owen, D.R.: Structured Deformations, XXII Scuola Estiva di Fisica Matematica, Ravello, Settembre 1997. Quaderni dell’ Istituto Nazionale di Alta Matematica. Gruppo Nazionale di Fisica Matematica, Firenze (2000)

    MATH  Google Scholar 

  15. Deseri, L., Owen, D.R.: Active slip-band separation and the energetics of slip in single crystals. Int. J. Plast. 16, 1411–1418 (2000)

    Article  MATH  Google Scholar 

  16. Deseri, L., Owen, D.R.: Energetics of two-level shears and hardening of single crystals. Math. Mech. Solids 7, 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deseri, L., Owen, D.R.: Invertible structured deformations and the geometry of multiple slip in single crystals. Int. J. Plast. 18, 833–849 (2002)

    Article  MATH  Google Scholar 

  18. Deseri, L., Owen, D.R.: Toward a field theory for elastic bodies undergoing disarrangements. J. Elast. 70, 197–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deseri, L., Owen, D.R.: Submacroscopically stable equilibria of elastic bodies undergoing dissipation and disarrangements. Math. Mech. Solids 15, 611–638 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deseri, L., Owen, D.R.: Moving interfaces that separate loose and compact phases of elastic aggregates: a mechanism for drastic reduction or increase in macroscopic deformation. Contin. Mech. Thermodyn. 25, 311–341 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Deseri, L., Owen, D.R.: Stable disarrangement phases of elastic aggregates: a setting for the emergence of no-tension materials with non-linear response in compression. Meccanica 49, 2907–2932 (2014)

    Article  MATH  Google Scholar 

  22. Deseri, L., Owen, D.R.: Stable disarrangement phases arising from expansion/contraction or from simple shearing of a model granular medium. Int. J. Eng. Sci. 96, 111–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deseri, L., Owen, D.R.: Submacroscopic disarrangements induce a unique, additive and universal decomposition of continuum fluxes. J. Elast. 122, 223–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gibson, L.: The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9(76), 2749–2766 (2012)

    Article  Google Scholar 

  25. Gu, G.X., Takaffoli, M., Buehler, M.J.: Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29(28), 1700060 (2017)

    Article  Google Scholar 

  26. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  27. Habibi, M.K., Lu, Y.: Crack propagation in bamboo′s hierarchical cellular structure. Sci. Rep. 4, 5598 (2014). https://doi.org/10.1038/srep05598

    Article  ADS  Google Scholar 

  28. Lakes, R.: Materials with structural hierarchy. Nature 361, 511–515 (1993)

    Article  ADS  Google Scholar 

  29. Launey, M.E., Buehler, M.J., Ritchie, R.O.: On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010)

    Article  ADS  Google Scholar 

  30. Matias, J., Morandotti, M., Zappale, E.: Optimal design of fractured media with prescribed macroscopic strain. J. Math. Anal. Appl. 449, 1094–1132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newman, W.I., Gabrielov, A.M.: Failure of hierarchical distributions of fibre bundles I. Int. J. Fract. 50(1), 1–14 (1991)

    Google Scholar 

  32. Oliver, K., Seddon, A., Trask, R.S.: Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016)

    Article  ADS  Google Scholar 

  33. Owen, D.R.: Elasticity with disarrangements. In: Multiscale Modeling in Continuum Mechanics and Structured Deformations. CISM Courses and Lectures, vol. 447. Springer, Berlin (2004)

    Google Scholar 

  34. Owen, D.R.: Field equations for elastic constituents undergoing disarrangements and mixing. In: Šilhavý, M. (ed.) Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behavior. Quaderni di Matematica, vol. 20. Aracne, Rome (2007)

    Google Scholar 

  35. Owen, D.R.: Elasticity with gradient disarrangments: a multiscale perspective for strain-gradient theories of elasticity and of plasticity. J. Elast. 127, 115–150 (2017)

    Article  MATH  Google Scholar 

  36. Owen, D.R., Paroni, R.: Second-order structured deformations. Arch. Ration. Mech. Anal. 155, 215–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Owen, D.R., Paroni, R.: Optimal flux densities for linear mappings and the multiscale geometry of structured deformations. Arch. Ration. Mech. Anal. 218, 1633–1652 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozcoban, H., Yilmaz, E.D., Schneider, G.A.: Hierarchical microcrack model for materials exemplified at enamel. Dent. Mater. 34(1), 69–77 (2018)

    Article  Google Scholar 

  39. Pugno, N., Bosia, F., Abdalrahman, T.: Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Phys. Rev. E 85, 011903 (2012)

    Article  ADS  Google Scholar 

  40. Šilhavý, M.: On the approximation theorem for structured deformations from BV(\(\Omega \)). Math. Mech. Complex Syst. 3, 83–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Šilhavý, M.: The general form of the relaxation of a purely interfacial energy for structured deformations. Math. Mech. Complex Syst. 5, 191–215 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simonini, I., Pandolfi, A.: Customized finite element modelling of the human cornea. PLoS ONE 10(6), e0130426 (2015)

    Article  Google Scholar 

  43. Wang, R., Gupta, H.S.: Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011)

    Article  ADS  Google Scholar 

  44. Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The partial support from the grant ERC-2013-ADG-340561-INSTABILITIES is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Owen.

Additional information

To Walter Noll, whose writings set the foundations of continuum mechanics and whose commitment to colleagues, friends, and family endures in our memory

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the Approximation Theorem for Three-Level Structured Deformations

Appendix: Proof of the Approximation Theorem for Three-Level Structured Deformations

In this appendix we use the terms “simple deformation” and “piecewise-fit region” in the sense of [12]. Roughly speaking, a simple deformation is a piecewise smooth, injective mapping, and a piecewise-fit region is a finite union of regions without unopened cracks and with finite surface area.

Theorem 1

For each three-level structured deformation\((g,G_{1},G_{2})\)from a piecewise-fit regionthere exists a double sequence\((n_{1},n_{2})\longmapsto f_{n_{1},n_{2}}\)of simple deformations fromfor which

$$\begin{aligned} \lim_{n_{1}\rightarrow \infty }\lim_{n_{2}\rightarrow \infty }f_{n _{1},n_{2}} =&g, \\ \lim_{n_{1}\rightarrow \infty }\nabla \lim_{n_{2}\rightarrow \infty }f _{n_{1},n_{2}} =&G_{1}, \\ \lim_{n_{1}\rightarrow \infty }\lim_{n_{2}\rightarrow \infty }\nabla f_{n_{1},n_{2}} =&G_{2}, \end{aligned}$$

where each of the iterated limits\(\lim_{n_{1}\rightarrow \infty }\)and\(\lim_{n_{2}\rightarrow \infty }\)is taken in the sense of\(L^{\infty }\)-convergence.

Proof

Let a three-level structured deformation \((g,G_{1},G_{2})\) and a positive integer \(n_{1}\) be given. The three-level accommodation inequality (3) implies that the pair \((g,G_{1})\) is a (two-level) structured deformation. By the Approximation Theorem for two-level structured deformations and properties of the determinant mapping, we may choose a constant \(\bar{C}>0\) (that depends only upon the field \(G_{1} \)) and a simple deformation \(f_{n_{1}}\) such that

$$ \Vert g-f_{n_{1}} \Vert _{\infty }< \frac{1}{n_{1}}, \qquad \Vert G_{1}-\nabla f_{n_{1}} \Vert _{\infty }< \frac{ \bar{C}}{n_{1}} ,\quad \text{and}\quad \Vert \det G_{1}-\det \nabla f_{n _{1}} \Vert _{\infty }< \frac{1}{n_{1}}, $$
(103)

where \(\Vert \cdot \Vert _{\infty }\) denotes the \(L^{\infty }\) norm. By the three-level accommodation inequality (3) and (103) we conclude that

$$ \det \nabla f_{n_{1}}>\det G_{1}-\frac{1}{n_{1}}\geq \det G_{2}-\frac{1}{n _{1}}>c-\frac{1}{n_{1}}, $$
(104)

and we take from this point on \(n_{1}>c^{-1}\). (The inequality (104) can be written in terms of fields because the accommodation inequality holds at almost every point in ℬ for one and the same positive number \(c\).) We define

$$ \varphi (n_{1}):=2 \biggl(1- \biggl(1-\frac{1}{n_{1}c} \biggr)^{\frac{1}{3}} \biggr)>0 $$
(105)

and note that

$$ \lim_{n_{1}\rightarrow \infty }\varphi (n_{1})=0, $$
(106)

as well as \(\varphi (n_{1})>1-(1-\frac{1}{n_{1}c})^{\frac{1}{3}}\), so that

$$ 1-\frac{1}{n_{1}c}> \bigl(1-\varphi (n_{1}) \bigr)^{3}. $$
(107)

We infer from (104), (105), and (107) that

$$\begin{aligned} \det \nabla f_{n_{1}} >& \biggl(1-\frac{1}{n_{1}\det G_{2}} \biggr)\det G_{2} \\ >& \biggl(1-\frac{1}{n_{1}c} \biggr)\det G_{2}> \bigl(1-\varphi (n_{1}) \bigr)^{3}\det G_{2} \\ =&\det \bigl( \bigl(1-\varphi (n_{1}) \bigr)G_{2} \bigr). \end{aligned}$$
(108)

By (106) and the inequality \(\det G_{2}>c\), we may choose \(N_{1}>c^{-1}\) such that

$$ \bigl(1-\varphi (n_{1}) \bigr)^{3}>\frac{1}{2}\quad \text{for all}\ n_{1}>N_{1}. $$

The estimate (108) then implies

$$ \det \nabla f_{n_{1}}>\det \bigl( \bigl(1-\varphi (n_{1}) \bigr)G_{2} \bigr)>\frac{c}{2}\quad \text{for all}\ n_{1}>N_{1}, $$

and we conclude that the pair \((f_{n_{1},}(1-\varphi (n_{1}))G_{2})\) satisfies the accommodation inequality for (two-level) structured deformation for all \(n_{1}>N_{1}\). Thus, for each \(n_{1}>N_{1}\) and positive integer \(n_{2}\), the Approximation Theorem for (two-level) structured deformations permits us to choose a simple deformation \(f_{n_{1},n_{2}}\) such that

$$ \Vert f_{n_{1},n_{2}}-f_{n_{1}} \Vert _{\infty }< \frac{1}{n _{2}}\quad \text{and}\quad \bigl\Vert \nabla f_{n_{1},n_{2}}- \bigl(1- \varphi (n_{1}) \bigr)G_{2} \bigr\Vert _{\infty }< \frac{1}{n_{2}}. $$

Therefore, for each \(n_{1}>N_{1}\) we may let \(n_{2}\) tend to \(\infty \) in the last two inequalities to obtain

$$ \lim_{n_{2}\rightarrow \infty }f_{n_{1},n_{2}}=f_{n_{1}}\quad \text{and}\quad \lim_{n_{2}\rightarrow \infty }\nabla f_{n_{1},n _{2}}= \bigl(1-\varphi (n_{1}) \bigr)G_{2}, $$

and, in view of (106), we may then let \(n_{1}\) tend to \(\infty \) in each of the last two relations to conclude from (103)

$$\begin{aligned} \lim_{n_{1}\rightarrow \infty }\lim_{n_{2}\rightarrow \infty }f_{n _{1},n_{2}} =&\lim _{n_{1}\rightarrow \infty }f_{n_{1}}=g, \\ \lim_{n_{1}\rightarrow \infty }\nabla \lim_{n_{2}\rightarrow \infty }f _{n_{1},n_{2}} =&\lim_{n_{1}\rightarrow \infty }\nabla f_{n_{1}}=G _{1}, \\ \lim_{n_{1}\rightarrow \infty }\lim_{n_{2}\rightarrow \infty }\nabla f_{n_{1},n_{2}} =&\lim_{n_{1}\rightarrow \infty } \bigl( \bigl(1-\varphi (n_{1}) \bigr)G _{2} \bigr)=G_{2}. \end{aligned}$$

In all of these relations, the limits are taken in the sense of \(L^{\infty }\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deseri, L., Owen, D.R. Elasticity with Hierarchical Disarrangements: A Field Theory That Admits Slips and Separations at Multiple Submacroscopic Levels. J Elast 135, 149–182 (2019). https://doi.org/10.1007/s10659-018-9707-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9707-0

Keywords

Mathematics Subject Classification

Navigation