Journal of Elasticity

, Volume 124, Issue 1, pp 81–106 | Cite as

A Helical Cauchy-Born Rule for Special Cosserat Rod Modeling of Nano and Continuum Rods



We present a novel scheme to derive nonlinearly elastic constitutive laws for special Cosserat rod modeling of nano and continuum rods. We first construct a 6-parameter (corresponding to the six strains in the theory of special Cosserat rods) family of helical rod configurations subjected to uniform strain along their arc-length. The uniformity in strain then enables us to deduce the constitutive laws by just solving the warping of the helical rod’s cross-section (smallest repeating cell for nanorods) but under certain constraints. The constraints are shown to be critical in the absence of which, the 6-parameter family reduces to a well known 2-parameter family of uniform helical equilibria. An explicit formula for the 6-parameter helical map is derived which maps atoms in the repeating cell of a nanorod to their images for the purpose of repeating cell energy minimization. A scheme for the passage from nano to continuum scale is also presented to derive the constitutive laws of a continuum rod via atomistic calculations of nanorods. The bending, twisting, stretching and shearing stiffnesses of diamond nanorods and carbon nanotubes are computed to demonstrate our theory. We show that our scheme is more general and accurate than existing schemes allowing us to deduce shearing stiffness and several coupling stiffnesses of a nanorod for the first time.


Cauchy-Born rule Special Cosserat rod Elastic constitutive modeling Helical symmetry Molecular mechanics 

Mathematics Subject Classification

74B20 74A25 74Q15 



We thank the anonymous reviewers for their several useful suggestions. P. Gupta acknowledges support from the DST-INSPIRE fellowship.


  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995) CrossRefMATHGoogle Scholar
  2. 2.
    Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002) ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bozec, L., van der Heijden, G., Horton, M.: Collagen fibrils: nanoscale ropes. Biophys. J. 92, 70–75 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990) ADSCrossRefGoogle Scholar
  5. 5.
    Buehler, M., Kong, Y., Gao, H.: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004) CrossRefGoogle Scholar
  6. 6.
    Cai, W., Fong, W., Elsen, E., Weinberger, C.R.: Torsion and bending periodic boundary conditions for modeling the intrinsic strength of nanowires. J. Mech. Phys. Solids 56, 3242–3258 (2008) ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chandraseker, K., Mukherjee, S.: Coupling of extension and twist in single-walled carbon nanotubes. J. Appl. Mech. 73, 315–326 (2006) ADSCrossRefMATHGoogle Scholar
  8. 8.
    Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Chouaieb, N., Maddocks, J.H.: Kirchoff ’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2004) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966) ADSCrossRefMATHGoogle Scholar
  11. 11.
    Ericksen, J.L.: Special topics in elastostatics. Adv. Appl. Mech. 17, 189–244 (1977) ADSCrossRefMATHGoogle Scholar
  12. 12.
    Ericksen, J.L.: On the Cauchy-Born rule. Math. Mech. Solids 13, 199–220 (2008) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fang, C., Kumar, A., Mukherjee, S.: Finite element analysis of carbon nanotubes based on a rod model including in-plane cross-sectional deformation. Int. J. Solids Struct. 50, 49–56 (2013) CrossRefGoogle Scholar
  14. 14.
    Friesecke, G., James, R.D.: A scheme for the passage from atomic to continuum theory for thin film, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540 (2000) ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gupta, P., Kumar, A.: Effect of material nonlinearity on Euler buckling of nanorods and nanotubes (2016, in preparation) Google Scholar
  16. 16.
    Goriely, A., Tabor, M.: Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    Gould, T., Burton, D.A.: A Cosserat rod model with microstructure. New J. Phys. 8, 137(1–17) (2006) CrossRefGoogle Scholar
  18. 18.
    Goyal, S., Perkins, C., Lee, C.L.: Nonlinear dynamics and loop formation in Kirchoff rods with implications to the mechanics of DNA and cables. J. Comp. Physiol. 209, 371–389 (2005) ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hakobyan, Y., Tadmor, E.B., James, R.D.: Objective quasicontinuum approach for rod problems. Phys. Rev. B 86, 245435 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68, 87–92 (2001) ADSCrossRefMATHGoogle Scholar
  22. 22.
    James, R.D.: Objective structures. J. Mech. Phys. Solids 54, 2354–2390 (2006) ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Klein, C.A., Cardinale, G.F.: Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2, 918–923 (1993) ADSCrossRefGoogle Scholar
  24. 24.
    Kumar, A., Healey, T.J.: A generalized computational approach to stability of static equilibria of nonlinearly elastic rods in the presence of constraints. Comput. Methods Appl. Mech. Eng. 199, 1805–1815 (2010) ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kumar, A., Mukherjee, S.: A geometrically exact rod model including in-plane cross-sectional deformation. J. Appl. Mech. 78, 011010 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    Kumar, A., Mukherjee, S., Paci, J.T., Chandraseker, K., Schatz, G.C.: A rod model for three dimensional deformations of single-walled carbon nanotubes. Int. J. Solids Struct. 48, 2849–2858 (2011) CrossRefGoogle Scholar
  27. 27.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (2000) Google Scholar
  28. 28.
    Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105, 5626 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    Miller, R., Shenoy, V.B.: Size-dependent elastic properties of nano-sized structural elements. Nanotechnology 11, 139–147 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    Miller, J.T., Lazarus, A., Audoly, B., Reis, P.M.: Shapes of a suspended curly hair. Phys. Rev. Lett. 112, 068103 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    Mora, M.G., Muller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by \(\varGamma\)-convergence. Calc. Var. 18, 287–305 (2003) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Moroz, J.D., Nelson, P.: Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    Palanthandalam-Madpusi, H.J., Goyal, S.: Robust estimation of nonlinear constitutive law from static equilibrium data for modeling the mechanics of DNA. Automatica 47, 1175–1182 (2011) MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal. 190, 1–55 (2008) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solids Struct. 27, 371–393 (1991) MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Singh, R., Kumar, S., Kumar, A.: Effect of anisotropy and intrinsic twist on coupled deformations in an elastic rod (2016, in preparation) Google Scholar
  37. 37.
    Tadmor, E.B., Smith, G.S., Bernstein, N., Kaxiras, E.: Mixed finite element and atomistic formulation for complex crystals. Phys. Rev. B 59, 235–245 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    Timoshenko, S.P.: Strength of Materials, 2nd edn. Van Nostrand, Princeton (1940) MATHGoogle Scholar
  40. 40.
    Upamanyu, M., Wang, H.L., Liang, H.Y., Mahajan, R.: Strain dependent twist stretch elasticity in chiral filaments. J. R. Soc. Interface 20, 303–310 (2008) CrossRefGoogle Scholar
  41. 41.
    Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997) ADSCrossRefGoogle Scholar
  42. 42.
    Yang, J.Z., Weinan, E.: Generalized Cauchy-Born rules for elastic deformations of plates, sheets and rods: Derivation of continuum models from atomistic models. Phys. Rev. B 74, 184110 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    Yoshikawa, M., Mori, Y., Maegawa, M., Katagiri, G., Ishida, H., Ishitani, A.: Raman scattering from diamond particles. Appl. Phys. Lett. 62, 3114 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Applied MechanicsIIT DelhiNew DelhiIndia
  2. 2.Department of Mechanical EngineeringIIT DelhiNew DelhiIndia

Personalised recommendations