Journal of Elasticity

, Volume 123, Issue 2, pp 225–243 | Cite as

Legendre-Hadamard Conditions for Two-Phase Configurations



We generalize the classical Legendre-Hadamard conditions by using quadratic extensions of the energy around a set of two configurations and obtain new algebraic necessary conditions for nonsmooth strong local minimizers. The implied bounds of stability are easily accessible as we illustrate on a nontrivial example where quasiconvexification is unknown.


Martensitic phase transitions Quasiconvexity Elastic stability Ellipticity Phase boundaries Calculus of variations Strong local minimizers Laminates 

Mathematics Subject Classification

74N20 74G65 49J10 



This material is based upon work supported by the National Science Foundation under Grant No. DMS-1412058. LT was also supported by the French ANR contract EVOCRIT.


  1. 1.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/77) Google Scholar
  2. 2.
    Ball, J.M., James, R.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86(3), 251–277 (1984) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cherkaev, A.: Variational Methods for Structural Optimization. Springer, New York (2000) CrossRefMATHGoogle Scholar
  5. 5.
    Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dunn, J., Fosdick, R.: The Weierstrass condition for a special class of elastic materials. J. Elast. 34(2), 167–184 (1994) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fosdick, R., Royer-Carfagni, G.: Multiple natural states for an elastic isotropic material with polyconvex stored energy. J. Elast. 60(3), 223–231 (2000) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fu, Y.B., Freidin, A.B.: Characterization and stability of two-phase piecewise-homogeneous deformations. Proc. R. Soc., Math. Phys. Eng. Sci. 460(2051), 3065–3094 (2004) ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Giaquinta, M., Hildebrandt, S.: Calculus of Variations. I the Lagrangian Formalism. Grundlehren der Mathematischen Wissenschaften, vol. 310. Springer, Berlin (1996) MATHGoogle Scholar
  10. 10.
    Grabovsky, Y., Kucher, V.A., Truskinovsky, L.: Weak variations of Lipschitz graphs and stability of phase boundaries. Contin. Mech. Thermodyn. 23(2), 87–123 (2011) ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grabovsky, Y., Truskinovsky, L.: Roughening instability of broken extremals. Arch. Ration. Mech. Anal. 200(1), 183–202 (2011) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grabovsky, Y., Truskinovsky, L.: Marginal material stability. J. Nonlinear Sci. 23(5), 891–969 (2013) ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grinfeld, M.A.: Stability of interphase boundaries in solid elastic media. Prikl. Mat. Meh. 51(4), 628–637 (1987) MathSciNetGoogle Scholar
  14. 14.
    Hadamard, J.: Sur quelques questions de Calcul des variations. Bull. Soc. Math. Fr. 30, 253–256 (1902) Google Scholar
  15. 15.
    James, R.D.: Finite deformation by mechanical twinning. Arch. Ration. Mech. Anal. 77(2), 143–176 (1981) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jensen, H.M., Christoffersen, J.: Kink band formation in fiber reinforced materials. J. Mech. Phys. Solids 45(7), 1121–1136 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    Knowles, J.K., Sternberg, E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kristensen, J.: On the non-locality of quasiconvexity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16(1), 1–13 (1999) ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    McShane, E.J.: On the necessary condition of Weierstrass in the multiple integral problem of the calculus of variations. Ann. Math. 32(3), 578–590 (1931) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Merodio, J., Pence, T.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I. Mechanical equilibrium. J. Elast. 62(2), 119–144 (2001) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Merodio, J., Pence, T.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62(2), 145–170 (2001) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 328(1575), 567–583 (1972) ADSCrossRefMATHGoogle Scholar
  23. 23.
    Simpson, H.C., Spector, S.J.: Some necessary conditions at an internal boundary for minimizers in finite elasticity. J. Elast. 26(3), 203–222 (1991) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Taheri, A.: On critical points of functionals with polyconvex integrands. J. Convex Anal. 9(1), 55–72 (2002) MathSciNetMATHGoogle Scholar
  25. 25.
    Truesdell, C.A.: A First Course in Rational Continuum Mechanics, vol. 1, 2nd edn. Academic Press, New York (1991). General concepts MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Temple UniversityPhiladelphiaUSA
  2. 2.Ecole PolytechniquePalaiseauFrance

Personalised recommendations