Skip to main content
Log in

From Rate-Dependent to Rate-Independent Brittle Crack Propagation

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

On the base of many experimental results, e.g., Ravi-Chandar and Knauss (Int. J. Fract. 26:65–80, 1984), Sharon et al. (Phys. Rev. Lett. 76(12):2117–2120, 1996), Hauch and Marder (Int. J. Fract. 90:133–151, 1998), the object of our analysis is a rate-dependent model for the propagation of a crack in brittle materials. Restricting ourselves to the quasi-static framework, our goal is a mathematical study of the evolution equation in the geometries of the ‘Single Edge Notch Tension’ and of the ‘Compact Tension’. Besides existence and uniqueness, emphasis is placed on the regularity of the evolution making reference also to the ‘velocity gap’. The transition to the rate-independent model of Griffith is obtained by time rescaling, proving convergence of the rescaled evolutions and of their energies. Further, the discontinuities of the rate-independent evolution are characterized in terms of unstable points of the free energy. Results are illustrated by a couple of numerical examples in the above mentioned geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Anderson, T.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  3. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    MATH  Google Scholar 

  4. Bourdin, B., Francfort, G., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cherepanov, G.P., Germanovich, L.N.: An employment of the catastrophe theory in fracture mechanics as applied to brittle strength criteria. J. Mech. Phys. Solids 41(10), 1637–1649 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Ciarlet, P.: Mathematical Elasticity. Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  7. Dal Maso, G., Rampazzo, F.: On systems of ordinary differential equations with measures as controls. Differ. Integral Equ. 4(4), 739–765 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Dal Maso, G., DeSimone, A., Mora, M., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189(3), 469–544 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Destuynder, P., Djaoua, M.: Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math. Methods Appl. Sci. 3(1), 70–87 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Freund, L.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  13. Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 18, 163–198 (1920)

    Google Scholar 

  14. Hauch, J., Marder, M.: Energy balance in dynamic fracture, investigated by a potential drop technique. Int. J. Fract. 90, 133–151 (1998)

    Article  Google Scholar 

  15. Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18(9), 1529–1569 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Larsen, C., Ortiz, M., Richardson, C.: Fracture paths from front kinetics: relaxation and rate-independence. Arch. Ration. Mech. Anal. 193, 539–583 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Negri, M.: A comparative analysis on variational models for quasi-static brittle crack propagation. Adv. Calc. Var. (submitted)

  18. Negri, M., Ortner, C.: Quasi-static propagation of brittle fracture by Griffith’s criterion. Math. Models Methods Appl. Sci. 18(11), 1895–1925 (2008)

    Article  MathSciNet  Google Scholar 

  19. Puglisi, G., Truskinovsky, L.: Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53(3), 655–679 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Ravi-Chandar, K., Knauss, W.: An experimental investigation into dynamic fracture: II. Microstructural aspects. Int. J. Fract. 26, 65–80 (1984)

    Article  Google Scholar 

  21. Rice, J.: Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, pp. 192–308. Academic Press, San Diego (1968)

    Google Scholar 

  22. Sharon, E., Gross, S., Fineberg, J.: Energy dissipation in dynamic fracture. Phys. Rev. Lett. 76(12), 2117–2120 (1996)

    Article  ADS  Google Scholar 

  23. Toader, R., Zanini, C.: An artificial viscosity approach to quasi-static crack growth. Boll. Unione Mat. Ital. 2(1), 1–35 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Zanini, C.: Singular perturbations of finite dimensional gradient flows. Discrete Contin. Dyn. Syst. 18(4), 657–675 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, M. From Rate-Dependent to Rate-Independent Brittle Crack Propagation. J Elast 98, 159–187 (2010). https://doi.org/10.1007/s10659-009-9223-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9223-3

PACS

Mathematics Subject Classification (2000)

Navigation