Skip to main content
Log in

Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

A Discussion to this article was published on 14 July 2018

Abstract

Channel confluences at which two channels merge have an important effect on momentum exchange and contaminant diffusion in both natural rivers and artificial canals. In this study, a three-dimensional numerical model, which is based on the Reynolds Averaged Navier–Stokes equations and Reynolds Stress Turbulence model, is applied to simulate and compare flow patterns and contaminant transport processes for different bed morphologies. The results clearly show that the distribution of contaminant concentrations is mainly controlled by the shear layer and two counter-rotating helical cells, which in turn are affected by the discharge ratio and the bed morphology. As the discharge ratio increases, the shear flow moves to the outer bank and the counter-clockwise tributary helical cell caused by flow deflection is enlarged, leading the mixing happens near the outer bank and the mixing layer distorted. The bed morphology can induce shrinkage of the separation zone and increase of the clockwise main channel helical cell, which is initiated by the interaction between the tributary helical cell and the main channel flow and strengthened by the deep scour hole. The bed morphology can also affect the distortion direction of the mixing layer. Both a large discharge ratio and the bed morphology could lead to an increase in mixing intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(after Best [2])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schindfessel L, Creëlle S, Mulder TD (2015) Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water 7(9):4724–4751

    Article  Google Scholar 

  2. Best, JL (1985) Flow dynamics and sediment transport at river channel confluences. Ph.D. Thesis, University of London

  3. Best JL (1987) Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In: Ethridge FG, Flores RM, Harvey MD (eds) Recent developments in fluvial sedimentology, vol 39. SPEM Publication, Tulsa, pp 27–35

    Chapter  Google Scholar 

  4. Best JL (1988) Sediment transport and bed morphology at river channel confluences. Sedimentology 35:481–498

    Article  Google Scholar 

  5. Biron P, Best JL, Roy AG (1996) Effects of bed discordance on flow dynamics at open channel confluences. J Hydraul Eng 122(12):676–682

    Article  Google Scholar 

  6. Best JL, Reid I (1984) Separation zone at open-channel junctions. J Hydraul Eng 110(11):1588–1594

    Article  Google Scholar 

  7. Yang QY, Wang XY, Lu WZ, Wang XK (2009) Experimental study on characteristics of separation zone in confluence zones in rivers. J Hydrol Eng 14(2):166–171

    Article  Google Scholar 

  8. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A, Kirkil G (2011) Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: insight provided by an eddy-resolving numerical simulation. Water Resour Res 47:W05507. https://doi.org/10.1029/2010WR010018

    Google Scholar 

  9. Constantinescu G, Miyawaki S, Rhoads B, Sukhodolov A (2012) Numerical analysis of the effect of momentum ratio on the dynamics and sediment-entrainment capacity of coherent flow structures at a stream confluence. J Geophys Res 117:F04028. https://doi.org/10.1029/2012JF002452

    Article  Google Scholar 

  10. Leite Ribeiro M, Blanckaert K, Roy AG, Schleiss AJ (2012) Flow and sediment dynamics in channel confluences. J Geophys Res 117:F01035. https://doi.org/10.1029/2011JF002171

    Article  Google Scholar 

  11. Biron P, De Serres B, Roy AG, Best JL (1993) Shear layer turbulence at an unequal depth channel confluence. In: Clifford NJ, French JR, Hardisty J (eds) Turbulence: Perspectives on Flow and Sediment Transport. Wiley, Chichester, pp 197–213

    Google Scholar 

  12. Rhoads BL, Sukhodolov AN (2004) Spatial and temporal structure of shear layer turbulence at a stream confluence. Water Resour Res 40:W06304. https://doi.org/10.1029/2003WR002811

    Article  Google Scholar 

  13. Yuan SY, Tang HW, Xiao Y, Qiu XH, Zhang HM, Yu DD (2016) Turbulent flow structure at a 90-degree open channel confluence: accounting for the distortion of the shear layer. J Hydro-Environ Res 12:130–147

    Article  Google Scholar 

  14. Shakibainia A, Tabatabai MRM, Zarrati AR (2010) Three-dimensional numerical study of flow structure in channel confluences. Can J Civ Eng 37:772–781

    Article  Google Scholar 

  15. De Serres B, Roy AG, Biron PM, Best JL (1999) Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology 26:313–335

    Article  Google Scholar 

  16. Bradbrook KF, Lane SN, Richards KS, Biron PM, Roy AG (2001) Role of bed discordance at asymmetrical river confluences. J Hydraul Eng 127:351–368

    Article  Google Scholar 

  17. Wang XG, Yan ZM (2007) Three-dimensional simulation for effects of bed discordance on flow dynamics at Y-shaped open channel confluences. J Hydrodyn 19(5):587–593

    Article  Google Scholar 

  18. Boyer C, Roy AG, Best JL (2006) Dynamics of a river channel confluence with discordant beds: flow turbulence, bed load sediment transport, and bed morphology. J Geophys Res 111:F04007. https://doi.org/10.1029/2005JF000458

    Article  Google Scholar 

  19. Jirka GH (2004) Mixing and dispersion in rivers. In: Greco M, Carravetta A, Della Morte R (eds) River Flow. Taylor & Francis Group, London, pp 13–27

    Google Scholar 

  20. Gaudet JM, Roy AG (1995) Effect of bed morphology on flow mixing length at river confluences. Nature 373:138–139

    Article  Google Scholar 

  21. Best JL, Roy AG (1991) Mixing-layer distortion at the confluence of channels of different depth. Nature 350:411–413

    Article  Google Scholar 

  22. Mignot E, Vinkovic I, Doppler D, Riviere N (2014) Mixing layer in open-channel junction flows. Environ Fluid Mech 14(5):1027–1041

    Article  Google Scholar 

  23. Mcguirk JJ, Rodi W (1978) A depth-averaged mathematical model for the near field of side discharges into open-channel flow. J Fluid Mech 86(4):761–781

    Article  Google Scholar 

  24. Weerakoon SB, Tamai N (1989) Three dimensional calculation of flow structure in channel confluences using boundary-fitted coordinates. J Hydrosci Hydraul Eng 7:51–62

    Google Scholar 

  25. Weerakoon SB, Tamai N, Kawahara Y (2003) Depth-averaged flow computation at a river confluence. J Water Marit Eng 156(1):73–83

    Article  Google Scholar 

  26. Bradbrook KF, Biron PM, Lane SN, Richards KS, Roy AG (1998) Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol Process 12:1371–1396

    Article  Google Scholar 

  27. Bradbrook KF, Lane SN, Richards KS, Biron PM, Roy AG (2000) Large eddy simulation of periodic flow characteristics at river channel confluences. J Hydraul Res 38(3):207–215

    Article  Google Scholar 

  28. Ferguson R, Hoey T (2008) Effects of tributaries on main-channel geomorphology. In: Rice SP, Roy AG, Rhoads BL (eds) River confluences, tributaries and the fluvial network. Wiley, England, pp 183–208

    Chapter  Google Scholar 

  29. Yuan SY, Li L, Amini F, Tang HW (2014) Turbulence measurement of combined wave and surge overtopping over a full scale HPTRM strengthened levee. J Waterw Port C 4:04014014

    Article  Google Scholar 

  30. ANSYS-FLUENT® (2011) User’s Guide Release 14.0 (online). FLUENT Documentation. ANSYS Inc. http://www.ansys.com

  31. Mohammadiun S, Neyshabouri SAAS, Naser G, Vahabi H (2016) Numerical investigation of submerged vane effects on flow pattern in a 90° junction of straight and bend open channels. Iran J Sci Technol Trans Civ Eng 40(4):349–365

    Article  Google Scholar 

  32. Wei J, Li R, Kang P, Liu SY (2012) Study on transportation and diffusion characteristics of contaminants at flow confluence. Adv Water Sci 23(6):822–828 (In Chinese)

    Google Scholar 

  33. Rhoads BL, Sukhodolov AN (2008) Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface. Water Resour Res 44:W08440. https://doi.org/10.1029/2007WR006634

    Article  Google Scholar 

  34. Weerakoon SB, Kawahara Y, Tamai N (1991) Three dimensional flow structure in channel confluence of rectangular section. In: Proceeding X XIV congress, international association for hydraulic research, Part A, 373–380

  35. Rhoads BL, Sukhodolov AN (2001) Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resour Res 37:2393–2410. https://doi.org/10.1029/2001WR000316

    Article  Google Scholar 

  36. Sukhodolov AN, Rhoads BL (2001) Field investigation of three-dimensional flow structure at stream confluences: 2. Turbulence. Water Resour Res 37:2411–2424. https://doi.org/10.1029/2001WR000317

    Article  Google Scholar 

  37. Bradbrook KF, Lane SN, Richards KS (2000) Numerical simulation of three-dimensional time-averaged flow structure at river channel confluences. Water Resour Res 36:2731–2746. https://doi.org/10.1029/2000WR900011

    Article  Google Scholar 

  38. Biron PM, Ramamurthy AS, Han S (2004) Three-dimensional numerical modeling of mixing at river confluences. J Hydraul Eng 130(3):243–253

    Article  Google Scholar 

  39. Lane SN, Parsons DR, Best JL, Orfeo O, Kostaschuk RA, Hardy RJ (2008) Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. J Geophys Res 113:F02019. https://doi.org/10.1029/2006JF000745

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by National Science Foundation of China (Grand Nos. 51239003, 51509073 and 51779080), the Research Innovation Program for Graduate Students of Jiangsu Province (Grand No. B1504703), and the Program of Introducing Talents of Discipline to Universities (111 Project, Grand No. B17015). The opinions and conclusions described in this paper are solely those of the authors and do not necessarily reflect the opinions or policies of the sponsors. Thanks are also extended to Huaihe River Basin Water Resources Protection Bureau for their support during the experiments. The authors are grateful to the anonymous reviewers for comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhang, H. & Yuan, S. Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence. Environ Fluid Mech 18, 443–463 (2018). https://doi.org/10.1007/s10652-017-9562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-017-9562-8

Keywords

Navigation