Skip to main content
Log in

Variances and variance estimators of the improved ratio estimators under adaptive cluster sampling

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Although not design-unbiased, the ratio estimator is recognized as more efficient when a certain degree of correlation exists between the variable of primary interest and the auxiliary variable. Meanwhile, the Rao–Blackwell method is another commonly used procedure to improve estimation efficiency. Various improved ratio estimators under adaptive cluster sampling (ACS) that make use of the auxiliary information together with the Rao–Blackwellized univariate estimators have been proposed in past research studies. In this article, the variances and the associated variance estimators of these improved ratio estimators are proposed for a thorough framework of statistical inference under ACS. Performance of the proposed variance estimators is evaluated in terms of the absolute relative percentage bias and the empirical mean-squared error. As expected, results show that both the absolute relative percentage bias and the empirical mean-squared error decrease as the initial sample size increases for all the variance estimators. To evaluate the confidence intervals based on these variance estimators and the finite-population Central Limit Theorem, the coverage rate and the interval width are used. These confidence intervals suffer a disadvantage similar to that of the conventional ratio estimator. Hence, alternative confidence intervals based on a certain type of adjusted variance estimators are constructed and assessed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banik S, Kibria BMG (2010) Comparision of some parametric and nonparametric type one sample confidence intervals for estimating the mean of a positively skewed distribtion. Comm Stat-Simul Comput 39:361–389

    Article  Google Scholar 

  • Cassel CM, Särndal CE, Wretman JH (1976) Some results on generalized difference estimation and generalized regression estimation for finite population. Biometrics 63:615–620

    Article  Google Scholar 

  • Chao CT (2004) Ratio estimation on adaptive cluster sampling. J Chin Stat Assoc 42(3):307–327

    Google Scholar 

  • Chao CT, Dryver AL, Chiang TC (2010) Utilization of the Rao–Blackwellized univariate estimators to improve ratio estimators in adaptive cluster sampling. 45th Scientific Meeting of the Italian Statistical Society SIS 2010, Padova, Italy

  • Chao CT, Dryver AL, Chiang TC (2011) Leveraging the Rao–Blackwell theorem to improve ratio estimators in adaptive cluster sampling. Environ Ecol Stat 18(3):543–568

    Article  Google Scholar 

  • Christman MC, Pontius JS (2000) Bootstrap confidence intervals for adaptive cluster sampling. Biometrics 56(2):503–510

    Article  CAS  PubMed  Google Scholar 

  • David IP, Sukhatme BV (1974) On the bias and mean square error of the ratio estimator. J Am Stat Assoc 69:464–466

    Article  Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, London

    Google Scholar 

  • Dryver AL, Chao CT (2007) Ratio estimators in adaptive cluster sampling. Environmetrics 18:607–620

    Article  Google Scholar 

  • Dryver AL, Thompson SK (2005) Improved unbiased estimators in adaptive cluster sampling. J R Stat Soc B67(1):157–166

    Article  Google Scholar 

  • Félix-Medina MH (2000) Analytical expressions for Rao–Blackwell estimators in adaptive cluster sampling. J Stat Plan Inference 84:221–236

    Article  Google Scholar 

  • Lohr SL (1999) Sampling: design and analysis. Duxbury Press, Pacific Grove

    Google Scholar 

  • Hansen MM, Hurwitz WN (1943) On the theory of sampling from finite population. Ann Math Stat 14: 333–362

    Article  Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Article  Google Scholar 

  • Meeden G (1999) Interval estimators for the population mean for skewed distributions with a small sample size. J Appl Stat 26(1):81–96

    Article  Google Scholar 

  • Salehi MM (1999) Rao–Blackwell versions of the Horvitz–Thompson and Hansen–Hurwitz estimators in adaptive cluster sampling. Environ Ecol Stat 6:183–195

    Article  Google Scholar 

  • Salehi MM, Mohammadi M, Rao JNK, Berger YG (2010) Empirical likelihood confidence intervals for adaptive cluster sampling. Environ Ecol Stat 17:111–123

    Article  Google Scholar 

  • Smith DR, Conroy MJ, Brakhage DH (1995) Efficiency of adaptive cluster sampling for estimating density of wintering waterfowl. Biometrics 51:777–788

    Article  Google Scholar 

  • Thompson SK (1990) Adaptive cluster sampling. J Am Stat Assoc 85:1050–1059

    Article  Google Scholar 

  • Wu CFJ (1982) Estimation of variance of the ratio estimator. Biometrika 69:183–189

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research is provided by the National Science Council, Taiwan, NSC 100-2118-M-006-004. The authors are grateful to the editor and referees for their insightful and constructive comments/suggestions that greatly improved the presentation and quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Tai Chao.

Additional information

Handling Editor: Pierre Dutilleul.

Appendix

Appendix

1.1 Derivation of the bound for \(\text{ MSE }(\hat{\mu }_{r\cdot ht}) - \text{ Avar }(\hat{\mu }_{r \cdot ht})\)

Let \(\delta \bar{y}_k^{*} = (\hat{\mu }_{y\cdot ht} - \mu _y)/\mu _y\) and \(\delta \bar{x}_k^{*} = (\hat{\mu }_{x\cdot ht} - \mu _x)/\mu _x\), the MSE of \(\hat{R}\) can be expressed as

$$\begin{aligned} \text{ MSE }(\hat{R}) = E(\hat{R} - R)^2 = R^2E\left[ \{\delta \bar{y}_k^{*} - \delta \bar{x}_k^{*}\}^2\{\mu _x^2/\hat{\mu }_{x\cdot ht}^2\}\right] . \end{aligned}$$

Consider approximating \(\text{ MSE }(\hat{R})\) by the first-order approximate MSE

$$\begin{aligned} \text{ Avar }(\hat{R}) = R^2E\left[ \{\delta \bar{y}_k^{*} - \delta \bar{x}_k^{*}\}^2\right] , \end{aligned}$$

thus, we obtain that

$$\begin{aligned} \text{ MSE }(\hat{R}) - \text{ Avar }(\hat{R}) = -\mu _y^2E\left[ \hat{\mu }_{x\cdot ht}^{-2}\left\{ \delta \bar{y}_k^{*} - \delta \bar{x}_k^{*}\right\} ^2\left\{ 2\delta \bar{x}_k^{*} + (\delta \bar{x}_k^{*})^2\right\} \right] . \end{aligned}$$

Hence, if \(x_0\) is a positive lower bound of \(\hat{\mu }_{x \cdot ht}\), then

$$\begin{aligned}&\left| \text{ MSE }(\hat{\mu }_{r\cdot ht}) - \text{ Avar }(\hat{\mu }_{r \cdot ht})\right| \\&\quad \le \left( \frac{\mu _x\mu _y}{x_0}\right) ^2 \left| E\left[ \{\delta \bar{y}_k^{*} - \delta \bar{x}_k^{*}\}^2\{2\delta \bar{x}_k^{*} + \left( \delta \bar{x}_k^{*}\right) ^2\}\right] \right| \\&\quad =\left( \frac{\mu _x\mu _y}{x_0}\right) ^2\Biggl |2 \left[ E(\delta \bar{x}_k^{*})^3 - 2E(\delta \bar{x}_k^{*})^2(\delta \bar{y}_k^{*}) + E(\delta \bar{x}_k^{*})(\delta \bar{y}_k^{*})^2\right] \\&\qquad + E(\delta \bar{x}_k^{*})^4 - 2E(\delta \bar{x}_k^{*})^3(\delta \bar{y}_k^{*}) + E(\delta \bar{x}_k^{*})^2(\delta \bar{y}_k^{*})^2\Biggr |\\&\quad = \left( \frac{\mu _x\mu _y}{x_0N}\right) ^2\Biggl |\sum \limits _{i=1}^K \sum \limits _{j=1}^K\sum \limits _{k=1}^K\left( \frac{\alpha _{ijk} - \alpha _i\alpha _j\alpha _k}{\alpha _i\alpha _j\alpha _k}\right) \Bigl (2\frac{x_i^{*}}{\mu _x}\frac{x_j^{*}}{\mu _x}\frac{x_k^{*}}{\mu _x} - 4\frac{x_i^{*}}{\mu _x}\frac{x_j^{*}}{\mu _x}\frac{y_k^{*}}{\mu _y} + 2\frac{x_i^{*}}{\mu _x}\frac{y_j^{*}}{\mu _y}\frac{y_k^{*}}{\mu _y}\Bigr ) \\&\qquad +\sum \limits _{i=1}^K\sum \limits _{j=1}^K\sum \limits _{k=1}^K\sum \limits _{l=1}^K \left( \frac{\alpha _{ijkl}- \alpha _i\alpha _j\alpha _k\alpha _l}{\alpha _i\alpha _j\alpha _k\alpha _l} \right) \Bigl (\frac{x_i^{*}}{\mu _x}\frac{x_j^{*}}{\mu _x}\frac{x_k^{*}}{\mu _x}\frac{x_l^{*}}{\mu _x} -2\frac{x_i^{*}}{\mu _x}\frac{x_j^{*}}{\mu _x} \frac{x_k^{*}}{\mu _x}\frac{y_l^{*}}{\mu _y} +\frac{x_i^{*}}{\mu _x}\frac{x_j^{*}}{\mu _x} \frac{y_k^{*}}{\mu _y}\frac{y_l^{*}}{\mu _y}\Bigr )\Biggr |, \end{aligned}$$

where \(\alpha _{ijk}\) and \(\alpha _{ijkl}\) are the initial intersection probabilities of networks \(i,j,k\) and \(i,j,k,l\), respectively.

1.2 Derivation of the variance and variance estimator of \(\hat{\mu }_{r\cdot ht(s)}\)

The variance of \(\hat{\mu }_{r\cdot ht(s)}\) is

$$\begin{aligned} \text{ Avar }\left( \hat{\mu }_{r \cdot ht(s)}\right)&= \text{ var }\left( \hat{\mu }_{u \cdot ht}\right) - \text{ E }\left( \text{ var }(\hat{\mu }_{u \cdot ht}|d^+)\right) \nonumber \\&= \text{ var }\left( \hat{\mu }_{u \cdot ht}\right) - \text{ E }\left( \hat{\mu }_{u \cdot ht}-\hat{\mu }_{u \cdot ht(s)}\right) ^2. \end{aligned}$$
(19)

On substitution the analytical forms of \(\hat{\mu }_{u \cdot ht}\) (Thompson 1990) and \(\hat{\mu }_{u \cdot ht(s)}\) (Dryver and Thompson 2005) into the second term of (19), we then have

$$\begin{aligned} \text{ E }\left( \hat{\mu }_{u \cdot ht}-\hat{\mu }_{u \cdot ht(s)}\right) ^{\!\!2}&= \text{ E }\left[ \frac{1}{n_0^2}\left( \sum \limits _{k\in s_0\cap F_2}u^*_k-\frac{\phi _{s_0}}{\phi _s}\sum \limits _{k\in F_2}u^*_k\right) ^2\right] \\&= \sum \limits _{d^+}\frac{P_{d^+}}{L_{d^+}}\Biggl [\sum \limits _{s_0\in \mathcal{S }}\frac{I_{s_0}}{n_0^2} \biggl (\sum \limits _{k\in s_0\cap F_2}u^{*2}_k+ 2\sum \limits _{k,l \in F_2}\sum \limits _{l < k}u^*_ku^*_l\biggr )\\&+ \sum \limits _{s_0\in \mathcal{S }}\frac{I_{s_0}}{n_0^2} \biggl (\!-2 \Bigl (\frac{\phi _{s_0}}{\phi _s} \sum \limits _{k\in s_0\cap F_2}u^*_k\sum \limits _{k\in F_2}u^*_k\Bigr )+\Bigl (\frac{\phi _{s_0}}{\phi _s}\sum \limits _{k\in F_2}u^*_k\Bigr )^2\biggr )\!\Biggr ]. \end{aligned}$$

Since each set of the sampled edge units given \(d^+\) has an equal initial selection probability, and out of the \(\left( {\begin{array}{c}\phi _s\\ \phi _{s_0}\end{array}}\right) \) possible combinations for choosing the sampled edge units, all of the \(i\) edge units appear \(\left( {\begin{array}{c}\phi _s-i\\ \phi _{s_0}-i\end{array}}\right) \) times. Hence, out of the \(L_{d^+}\) combinations, any of the \(i\) edge units appears \(\frac{\left( {\begin{array}{c}\phi _s-i\\ \phi _{s_0}-i\end{array}}\right) }{\left( {\begin{array}{c}\phi _s\\ \phi _{s_0}\end{array}}\right) }\times L_{d^+}\) times. Thus we have

$$\begin{aligned} \sum \limits _{s_0\in \mathcal{S }}I_{s_0}\sum \limits _{k\in s_0\cap F_2} u^{*2}_k&= L_{d^+}\frac{\left( {\begin{array}{c}\phi _s-1\\ \phi _{s_0}-1\end{array}}\right) }{\left( {\begin{array}{c}\phi _s\\ \phi _{s_0}\end{array}}\right) }\sum \limits _{k\in F_2}u^{*2}_k,\\ \sum \limits _{s_0\in \mathcal{S }}I_{s_0}\sum \limits _{k,l \in F_2} \sum \limits _{l < k}u^*_ku^*_l&= L_{d^+}\frac{\left( {\begin{array}{c}\phi _s-2\\ \phi _{s_0}-2\end{array}}\right) }{\left( {\begin{array}{c}\phi _s\\ \phi _{s_0}\end{array}}\right) }\sum \limits _{k,l \in F_2} \sum \limits _{l < k}u^*_ku^*_l, \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{s_0\in \mathcal{S }}I_{s_0}\sum \limits _{k\in s_0\cap F_2}u^{*}_k = L_{d^+}\frac{\left( {\begin{array}{c}\phi _s-1\\ \phi _{s_0}-1\end{array}}\right) }{\left( {\begin{array}{c}\phi _s\\ \phi _{s_0}\end{array}}\right) }\sum \limits _{k\in F_2}u^{*}_k. \end{aligned}$$

Consequently,

$$\begin{aligned} \text{ E }\left( \text{ var }(\hat{\mu }_{u \cdot ht}|d^+)\right)&= \text{ E }\left( \hat{\mu }_{u \cdot ht}-\hat{\mu }_{u \cdot ht(s)}\right) ^2\\&= \sum \limits _{d^+}\frac{P_{d^+}}{L_{d^+}}\frac{1}{\left( n_0\phi _s\right) ^2}\left( \phi _{s_0}\left( \phi _s-\phi _{s_0} \right) \sum \limits _{k\in F_2}u^{*2}_k+ 2\frac{\phi _{s_0}\left( \phi _{s_0}-\phi _s\right) }{\phi _s-1}\sum \limits _{k,l \in F_2}\sum \limits _{l < k}u^*_ku^*_l\right) \end{aligned}$$

and hence

$$\begin{aligned} \widehat{\text{ var }}\left( \hat{\mu }_{u\cdot ht}|d^+\right) = \frac{1}{\left( n_0\phi _s\right) ^2}\left( \phi _{s_0}\left( \phi _s-\phi _{s_0}\right) \sum \limits _{k \in F_2} \hat{u}^{*2}_k +2\frac{\phi _{s_0}\left( \phi _{s_0}-\phi _s\right) }{\phi _s-1}\sum \limits _{k,l \in F_2}\sum \limits _{l < k}\hat{u}^*_k\hat{u}^*_l\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, FM., Chao, CT. Variances and variance estimators of the improved ratio estimators under adaptive cluster sampling. Environ Ecol Stat 21, 285–311 (2014). https://doi.org/10.1007/s10651-013-0255-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-013-0255-2

Keywords

Navigation