Skip to main content
Log in

Infinitesimal perturbation analysis of a single-stage fluid queue with loss feedback and non-responsive competing traffic

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper we perform Infinitesimal Perturbation Analysis (IPA) for a single-stage stochastic fluid queue that is shared between two competing sources, one that employs additive loss-feedback congestion control and the other that employs no congestion-control (i.e., it is unresponsive). This scenario is applicable within the realm of computer communication networks particularly at bottleneck router queues where multiple and diverse flows compete for bandwidth. We optimize the tradeoff between total loss volume and queue workload (a measure for queueing delay). Although a sound knowledge of the system’s dynamics is required to derive the IPA gradient estimators, no knowledge of the underlying probability distributions governing the system is required. What results are fairly simple counting processes, whose values can be computed directly from an ongoing live stream of traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This applies also to the queue-workload derivative

References

  • Cassandras C, Sun G, Panayiotou C (2001) Stochastic fluid models for control and optimization of systems with quality of service requirements. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol 2, pp 1917–22

  • Cassandras C, Sun G, Panayiotou C, Wardi Y (2003) Perturbation analysis and control of two-class stochastic fluid models for communication networks. IEEE Trans Autom Control 48(5):770–82

    Article  MathSciNet  Google Scholar 

  • Cassandras CG, Wardi Y, Panayiotou CG, Yao C (2010) Perturbation analysis and optimization of stochastic hybrid systems. Eur J Control 6(6):642–661

    Article  MathSciNet  MATH  Google Scholar 

  • Nosrati S, Nikravesh S (2004) Perturbation analysis for loss volume and buffer workload in tandem two-class stochastic fluid models for communication networks. In: Proceedings of the 5th Asian Control Conference, 2004, pp 701–7

  • Panayiotou C (2004) On-line resource sharing in communication networks using infinitesimal perturbation analysis of stochastic fluid models. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), 2004, vol 1. Nassau, Bahamas, pp 563–8

    Google Scholar 

  • Sun G, Cassandras C, Wardi Y, Panayiotou C (2003) Perturbation analysis of stochastic flow networks. In: Proceedings of the 42nd IEEE International Conference on Decision and Control, 2004, pp 4831–6

  • Sun G, Cassandras C, Wardi Y, Panayiotou C, Riley G (2004) Perturbation analysis and optimization of stochastic flow networks. IEEE Trans Autom Control 49(12):2143–59

    Article  MathSciNet  Google Scholar 

  • Sun G, Cassandras CG, Panayiotou CG (2004) Perturbation analysis of multiclass stochastic fluid models. Discret Event Dyn Syst 14(3):267–307

    Article  MathSciNet  MATH  Google Scholar 

  • Wardi Y, Adams R, Melamed B (2010) A unified approach to infinitesimal perturbation analysis in stochastic flow models: The single-stage case. IEEE Trans Autom Control 55(1):89–103

    Article  MathSciNet  Google Scholar 

  • Wardi Y, Melamed B (2001) Estimating nonparametric IPA derivatives of loss functions in tandem fluid models. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, pp 4517–22

  • Wardi Y, Melamed B, Cassandras C, Panaytou C (2002) Online IPA gradient estimators in stochastic continuous fluid models. J Optim Theory Appl 115(2):369–405

    Article  MathSciNet  MATH  Google Scholar 

  • Wardi Y, Riley G (2002) IPA for loss volume and buffer workload in tandem SFM networks. In: Proceedings of the Sixth International Workshop on Discrete Event Systems, 2002, pp 393–8

  • Wardi Y, Riley G (2004) IPA for spillover volume in a fluid queue with retransmissions. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), 2004, pp 3756–61

  • Wardi Y, Riley GF (2010) Infinitesimal perturbation analysis in networks of stochastic flow models: General framework and case study of tandem networks with flow control. Discret Event Dyn Syst: Theory Appl 20(2):275–305

    Article  MathSciNet  MATH  Google Scholar 

  • Yao C, Cassandras C (2009) Perturbation analysis and optimization of multiclass multiobjective stochastic flow models. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009, pp 914–919

  • Yao C, Cassandras C (2011) Perturbation analysis of stochastic hybrid systems and applications to resource contention games. Front Electr Electron Eng China 6(3):453–467

    Article  Google Scholar 

  • Yu H, Cassandras C (2003) Perturbation analysis of feedback-controlled stochastic flow systems. In: Proceedings of the 42nd IEEE International Conference on Decision and Control, 2003, pp 6277–82

  • Yu H, Cassandras C (2004) Multiplicative feedback control in communication networks using stochastic flow models. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), 2004, pp 557–62

  • Yu H, Cassandras C (2004) Perturbation analysis of feedback-controlled stochastic flow systems. IEEE Trans Autom Control 49(8):1317–32

    Article  MathSciNet  Google Scholar 

  • Yu H, Cassandras C (2004) Perturbation analysis of stochastic flow systems with multiplicative feedback. In: Proceedings of the 2004 American Control Conference, 2004, pp 5734–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richelle V. Adams.

Appendix: Derivation of α 1

Appendix: Derivation of α 1

During a full-period:

$$ \alpha_{1} = \sigma_{1} - c\gamma\left(\frac{\alpha_{1}}{\alpha_{1} + \sigma_{2}} \right) $$
(30)
$$ \gamma = \sigma_{2} + \alpha_{1} - \beta $$
(31)

Substitute Eq. 31 into Eq. 30

$$\begin{array}{@{}rcl@{}} \alpha_{1} & = & \sigma_{1} - c(\sigma_{2} + \alpha_{1} - \beta)\left(\frac{\alpha_{1}}{\alpha_{1} + \sigma_{2}} \right) \\ & \Rightarrow & \alpha_{1}(\alpha_{1} + \sigma_{2}) = \sigma_{1}(\alpha_{1} + \sigma_{2}) - c(\sigma_{2} + \alpha_{1} - \beta)\alpha_{1} \\ & \Rightarrow & {\alpha_{1}^{2}} + \alpha_{1}\sigma_{2} = \sigma_{1}\alpha_{1} + \sigma_{1}\sigma_{2} - c\alpha_{1}\sigma_{2} - c{\alpha_{1}^{2}} + c\alpha_{1}\beta \\ & \Rightarrow & (1+c){\alpha_{1}^{2}} + (\sigma_{2}-\sigma_{1} + c\sigma_{2} - c\beta)\alpha_{1} - \sigma_{1}\sigma_{2} = 0 \\ & \Rightarrow & (1+c){\alpha_{1}^{2}} + ((1+c)\sigma_{2} - (\sigma_{1}+c\beta))\alpha_{1} - \sigma_{1}\sigma_{2} = 0 \\ & \Rightarrow & \alpha_{1} = \frac{-((1+c)\sigma_{2} - (\sigma_{1}+c\beta))\pm \sqrt{((1+c)\sigma_{2} - (\sigma_{1}+c\beta))^{2} + 4(1+c)\sigma_{1}\sigma_{2}}}{2(1+c)} \\ & \Rightarrow & \alpha_{1} = -\frac{\sigma_{2}(t)}{2} + \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \pm \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) } \end{array} $$

Now, for all σ 1(t),σ 2(t),β(t) and c:

$$\begin{array}{@{}rcl@{}} \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) } & > & \left|\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)}\right| \end{array} $$

so that

$$\begin{array}{@{}rcl@{}} -\frac{\sigma_{2}(t)}{2} + \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} - \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) } & < & 0 \\ -\frac{\sigma_{2}(t)}{2} + \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} + \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) } & > & 0 \end{array} $$

Therefore

$$\begin{array}{@{}rcl@{}} \Rightarrow \alpha_{1} & = & -\frac{\sigma_{2}(t)}{2} + \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} + \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) } \end{array} $$

Denote

$$\begin{array}{@{}rcl@{}} f(\sigma_{1}(t), \sigma_{2}(t), \beta(t), c) &\equiv& -\frac{\sigma_{2}(t)}{2} + \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \\ &+& \sqrt{\left(\frac{\sigma_{2}(t)}{2} - \frac{\sigma_{1}(t) + c\beta(t)}{2(1+c)} \right)^{2} + \sigma_{1}(t)\sigma_{2}(t) }\end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, R.V. Infinitesimal perturbation analysis of a single-stage fluid queue with loss feedback and non-responsive competing traffic. Discrete Event Dyn Syst 26, 367–382 (2016). https://doi.org/10.1007/s10626-014-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-014-0203-9

Keywords

Navigation