Advertisement

Designs, Codes and Cryptography

, Volume 86, Issue 5, pp 1161–1174 | Cite as

On intriguing sets of finite symplectic spaces

  • Antonio Cossidente
  • Francesco Pavese
Article
  • 116 Downloads

Abstract

Some constructions of intriguing sets of finite symplectic spaces are provided. In particular an affirmative answer to an existence question about small tight sets posed in De Beule et al. (Des Codes Cryptogr 50(2):187–201, 2009) is given.

Keywords

Symplectic polar space Tight set m-ovoids 

Mathematics Subject Classification

Primary 51A50 Secondary 51E20 05B25 51E12 

References

  1. 1.
    Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114(7), 1293–1314 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bray J., Holt D., Roney-Dougal C.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society, LNS 407, Cambridge University Press, New York (2013).CrossRefzbMATHGoogle Scholar
  3. 3.
    Bruen A.A., Hirschfeld J.W.P.: Intersections in projective space. I. Combinatorics. Math. Z. 193(2), 215–225 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Butler D.K.: On the intersection of ovoids sharing a polarity. Geom. Dedicata 135, 157–165 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cossidente A.: On Kestenband–Ebert partitions. J. Combin. Des. 5(5), 367–375 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cossidente A., Culbert C., Ebert G.L., Marino G.: On \(m\)-ovoids of \({\cal{W}}(3, q)\). Finite Fields Appl. 14(1), 76–84 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cossidente A., Pavese F.: On the geometry of unitary involutions. Finite Fields Appl. 36, 14–28 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cossidente A., Pavese F.: Subspace codes in \({\rm PG}(2n-1,q)\). Combinatorica. doi: 10.1007/s00493-016-3354-5.
  9. 9.
    Cossidente A., Pavese F.: Intriguing sets of \({\cal{W}}(5, q)\), \(q\) even. J. Combin. Theory Ser. A 127, 303–313 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De Beule J., Govaerts P., Hallez A., Storme L.: Tight sets, weighted \(m\)-covers, weighted \(m\)-ovoids, and minihypers. Des. Codes Cryptogr. 50(2), 187–201 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dye R.H.: Spreads and classes of maximal subgroups of \({\rm GL}_n(q),{\rm SL}_n(q),{\rm PGL}_n(q)\) and \({\rm PSL}_n(q)\). Ann. Mat. Pura Appl. 158(4), 33–50 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. (V) 114, 173–194 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drudge K.: Proper \(2\)-covers of \({\rm PG}(3, q)\), \(q\) even. Geom. Dedicata 80(1–3), 59–64 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ebert G.L.: Partitioning projective geometries into caps. Can. J. Math. 37(6), 1163–1175 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hirschfeld J.W.P.: Projective Geometries over Finite Fields. Oxford Mathematical MonographsOxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998).zbMATHGoogle Scholar
  16. 16.
    Kelly S.: Constructions of intriguing sets of polar spaces from field reduction and derivation. Des. Codes Cryptogr. 43(1), 1–8 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kestenband B.C.: Projective geometries that are disjoint unions of caps. Can. J. Math. 32(6), 1299–1305 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kleidman P., Liebeck M.: The Subgroup Structure of the Finite Classical Groups, vol. 129. London Mathematical Society Lecture Note SeriesCambridge University Press, Cambridge (1990).CrossRefzbMATHGoogle Scholar
  19. 19.
    Nakić A., Storme L.: Tight sets in finite classical polar spaces. Adv. Geom. 17(1), 109–129 (2017).MathSciNetGoogle Scholar
  20. 20.
    O’Keefe C.M.: Ovoids in \({\rm PG}(3, q)\): a survey. Discret. Math. 151, 171–188 (1996).MathSciNetGoogle Scholar
  21. 21.
    Pavese F.: Geometric constructions of two-character sets. Discret. Math. 338(3), 202–208 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Segre B.: Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70(4), 1–201 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Segre B.: On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two. Acta Arith. 5, 315–332 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica, Informatica ed EconomiaUniversità degli Studi della BasilicataPotenzaItaly
  2. 2.Dipartimento di Meccanica, Matematica e ManagementPolitecnico di BariBariItaly

Personalised recommendations