Designs, Codes and Cryptography

, Volume 83, Issue 1, pp 83–99 | Cite as

Complete weight enumerators of a class of linear codes

  • Jaehyun Ahn
  • Dongseok Ka
  • Chengju Li


Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).


Linear codes Weight distribution Gauss sums 

Mathematics Subject Classification

94B05 11T23 11T71 



The authors would like to express deepest thanks to the editor and the anonymous reviewers for their invaluable comments and suggestions to improve the quality of this paper. Without their careful reading and sophisticated advice, the paper would have never been developed like this.


  1. 1.
    Bae S., Li C., Yue Q.: Some results on two-weight and three-weight linear codes, preprint (2015).Google Scholar
  2. 2.
    Berndt B., Evans R., Williams K.: Gauss and Jacobi Sums. Wiley, New York (1997).Google Scholar
  3. 3.
    Calderbank A.R., Goethals J.M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984).Google Scholar
  4. 4.
    Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).Google Scholar
  5. 5.
    Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).Google Scholar
  6. 6.
    Ding C.: Codes from Difference Sets. World Scientific, Singapore (2014).Google Scholar
  7. 7.
    Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015).Google Scholar
  8. 8.
    Ding K., Ding C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014).Google Scholar
  9. 9.
    Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015).Google Scholar
  10. 10.
    Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007).Google Scholar
  11. 11.
    Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005).Google Scholar
  12. 12.
    Ding C., Helleseth T., Kløve T., Wang X.: A general construction of authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007).Google Scholar
  13. 13.
    Ding C., Luo J., Niederreiter H.: Two-weight codes puncturedfrom irreducible cyclic codes. In: Li Y, et al. (eds.) Proceedings of the First Worshop on Coding and Cryptography, pp. 119–124. World Scientific, Singapore (2008).Google Scholar
  14. 14.
    Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Reading (1983).Google Scholar
  15. 15.
    Myerson G.: Period polynomials and gauss sums for finite fields. Acta Arith. 39(3), 251–264 (1981).Google Scholar
  16. 16.
    Tang C., Li N., Qi Y., Zhou Z., Helleseth T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016).Google Scholar
  17. 17.
    Yang S., Yao Z.: Complete weight enumerators of a family of three-weight liner codes. Des. Codes Cryptogr. (2016). doi: 10.1007/s10623-016-0191-x.
  18. 18.
    Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).Google Scholar
  19. 19.
    Zhou Z., Li N., Fan C., Helleseth T.: Linear codes with two or three weights from quadratic Bent functions. Des. Codes Cryptogr. (2015). doi: 10.1007/s10623-015-0144-9.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsChungnam National UniversityDaejeonKorea
  2. 2.School of Computer Science and Software EngineeringEast China Normal UniversityShanghaiChina
  3. 3.Department of MathematicsKAISTDaejeonKorea

Personalised recommendations