Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 310–314 | Cite as

Synthesis and Biological Activity of Several Modified 5α-Androstanolone Derivatives

  • N. Sh. Nadaraia
  • N. N. Barbakadze
  • M. L. Kakhabrishvili
  • B. Sylla
  • A. Pichette
  • U. S. Makhmudov

Several new N-containing epiandrosterone derivatives modified by phenylacetic acid chloride were synthesized for biological activity studies. Compounds with antiviral activity were discovered among them and 3β-hydroxy-1′-aryl-3′-methyl-5′-androstano[17,16-d]pyrazolines prepared by us earlier.


antiviral activity epiandrosterone modification phenylacetic acid hydrazones pyrazolines 



The work was financially supported by the Shota Rustaveli National Science Foundation of Georgia (Grant No. YS-2016-51, Potential Bioactive Steroidal Nitrogen-containing Compounds).


  1. 1.
    C. Gan, J. Cui, S. Su, Q. Lin, L. Jia, L. Fan, and Y. Huang, Steroids, 87, 99 (2014).CrossRefPubMedGoogle Scholar
  2. 2.
    S. Ke, L. Shi, and Z. Yang, Bioorg. Med. Chem. Lett., 25 (20), 4628 (2015).CrossRefPubMedGoogle Scholar
  3. 3.
    J. Cui, L. Fan, L. Huang, H. Liu, and A. Zhou, Steroids, 74, 62 (2009).CrossRefPubMedGoogle Scholar
  4. 4.
    M. Alam and D. U. Lee, Korean J. Chem. Eng., 32 (6), 1142 (2015).CrossRefGoogle Scholar
  5. 5.
    M. I. Sikharulidze, N. Sh. Nadaraia, and M. L. Kakhabrishvili, Chem. Nat. Compd., 48, 423 (2012).CrossRefGoogle Scholar
  6. 6.
    N. Sh. Nadaraia, E. O. Onashvili, M. L. Kakhabrishvili, N. N. Barbakadze, B. Silla, and A. Pichette, Chem. Nat. Compd., 52, 853 (2016).CrossRefGoogle Scholar
  7. 7.
    M. I. Sikharulidze, N. Sh. Nadaraia, M. L. Kakhabrishvili, N. N. Barbakadze, and K. G. Mulkidzhanyan, Chem. Nat. Compd., 46, 493 (2010).CrossRefGoogle Scholar
  8. 8.
    F. Wightman and D. L. Lighty, Physiol. Plantarum, 55, 17 (1982).CrossRefGoogle Scholar
  9. 9.
    V. Leuba and D. Le Tourneau, J. Plant Growth Regul., 9, 71 (1990).CrossRefGoogle Scholar
  10. 10.
    V. M. Rzheznikov, L. E. Golubovskaya, O. N. Minailova, B. I. Keda, T. I. Ivanenko, V. P. Fedotov, L. P. Sushinina, T. A. Titova, V. N. Tolkachev, I. P. Osetrova, and Z. S. Smirnova, Khim.-farm. Zh., 41 (10), 13 (2007).Google Scholar
  11. 11.
    N. Sh. Nadaraia, M. L. Kakhabrishvili, E. O. Onashvili, N. N. Barbakadze, M. Z. Getia, A. Pichette, M. I. Sikharulidze, and U. S. Makhmudov, Chem. Nat. Compd., 50, 1024 (2014).Google Scholar
  12. 12.
    Assays for Antiviral Activity Against Respiratory and Biodefense Viruses. DMID, NIAID, NIH.
  13. 13.
    Oxford Diffraction, CrysAlisPro, Oxford Diffraction Ltd., Yarnton, England, 2009.Google Scholar
  14. 14.
    G. M. Sheldrick, Program for Empirical Absorption Correction of Area Detector Data; University of Goettingen, Goettingen, 1996.Google Scholar
  15. 15.
    G. M. Sheldrick, Acta Cryst., Sect. A: Found. Crystallogr., 64, 112 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Sh. Nadaraia
    • 1
  • N. N. Barbakadze
    • 1
  • M. L. Kakhabrishvili
    • 1
  • B. Sylla
    • 2
  • A. Pichette
    • 2
  • U. S. Makhmudov
    • 3
  1. 1.I. Kutateladze Institute of PharmacochemistryTbilisi State Medical UniversityTbilisiGeorgia
  2. 2.LASEVE, Universite Quebec a ChicoutimiChicoutimiCanada
  3. 3.S. Yu. Yunusov Institute of the Chemistry of Plant SubstancesAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan

Personalised recommendations