Skip to main content
Log in

A finite-volume discretization for deformation of fractured media

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger, J.C., Cook, N.G., Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley, New York (2009)

    Google Scholar 

  2. Jing, L.: A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. 40(3), 283–353 (2003). https://doi.org/10.1016/s1365-1609(03)00013-3

    Article  Google Scholar 

  3. McClure, M.W., Horne, R.N.: An investigation of stimulation mechanisms in enhanced geothermal systems. Int. J. Rock Mech. Min 72, 242–260 (2014). https://doi.org/10.1016/j.ijrmms.2014.07.011

    Google Scholar 

  4. Oldenburg, C., Pruess, K., Benson, S.M.: Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energ. Fuel 15(2), 293–298 (2001)

    Article  Google Scholar 

  5. Rutqvist, J.: Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput. Geosci 37(6), 739–750 (2011). https://doi.org/10.1016/j.cageo.2010.08.006

    Article  Google Scholar 

  6. Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11(1), 7–40 (2003). https://doi.org/10.1007/s10040-002-0241-5

    Article  Google Scholar 

  7. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC, Boca Raton (2005)

    Google Scholar 

  8. Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. 44(5), 739–757 (2007). https://doi.org/10.1016/j.ijrmms.2006.11.006

    Article  Google Scholar 

  9. Liu, Y.J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., Pan, E., Dumont, N.A., Frangi, A., Saez, A.: Recent advances and emerging applications of the boundary element method. Appl. Mech. Rev. 64(3), 030802 (2012). https://doi.org/10.1115/1.4005491

    Article  Google Scholar 

  10. McClure, M.W., Horne, R.N.: Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model. Geophysics 76(6), WC181–WC198 (2011). https://doi.org/10.1190/geo2011-0064.1

    Article  Google Scholar 

  11. Norbeck, J.H., McClure, M.W., Lo, J.W., Horne, R.N.: An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation. Computat. Geosci. 20(1), 1–18 (2016). https://doi.org/10.1007/s10596-015-9543-2

    Article  Google Scholar 

  12. Crouch, S.L., Starfield, A.: Boundary Element Methods in Solid Mechanics: With Applications in Rock Mechanics and Geological Engineering. Allen & Unwin, London (1982)

    Google Scholar 

  13. Shou, K., Crouch, S.: A higher order displacement discontinuity method for analysis of crack problems. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1, 49–55 (1995)

    Article  Google Scholar 

  14. Zhou, X., Ghassemi, A.: Three-dimensional poroelastic analysis of a pressurized natural fracture. Int. J. Rock Mech. Min. 48(4), 527–534 (2011). https://doi.org/10.1016/j.ijrmms.2011.02.002

    Article  Google Scholar 

  15. Borja, R.I.: Plasticity. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Aagaard, B.T., Knepley, M.G., Williams, C.A.: A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res. Solid Earth 118(6), 3059–3079 (2013). https://doi.org/10.1002/jgrb.50217

    Article  Google Scholar 

  17. Kuna, M.: Finite elements in fracture mechanics. Springer, Berlin (2013)

    Book  Google Scholar 

  18. Garipov, T.T., Karimi-Fard, M., Tchelepi, H.A.: Discrete fracture model for coupled flow and geomechanics. Computat. Geosci. 20(1), 149–160 (2016). https://doi.org/10.1007/s10596-015-9554-z

    Article  Google Scholar 

  19. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Method Appl. M 200(13–16), 1591–1606 (2011). https://doi.org/10.1016/j.cma.2010.12.022

    Article  Google Scholar 

  20. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2009)

  21. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods 39(14), 1593–1618 (2015). https://doi.org/10.1002/nag.2400

    Article  Google Scholar 

  22. Nordbotten, J.M.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer. Methods Eng. 100(6), 399–418 (2014). https://doi.org/10.1002/nme.4734

    Article  Google Scholar 

  23. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3), 405–432 (2002)

    Article  Google Scholar 

  24. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. 112(8), 939–962 (2017). https://doi.org/10.1002/nme.5538

    Article  Google Scholar 

  25. Nordbotten, J.M.: Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal. 53(6), 2605–2625 (2015). https://doi.org/10.1137/140972792

    Article  Google Scholar 

  26. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016). https://doi.org/10.1137/15m1014280

    Article  Google Scholar 

  27. Ucar, E., Keilegavlen, E., Berre, I.: Post-injection normal closure of fractures as a mechanism for induced seismicity. Geophys. Res. Lett. 44, 9598–9606 (2017). https://doi.org/10.1002/2017GL074282

    Article  Google Scholar 

  28. Andrews, D.: Test of two methods for faulting in finite-difference calculations. Bull. Seismol. Soc. Am. 89(4), 931–937 (1999)

    Google Scholar 

  29. Daub, E.G., Carlson, J.M.: Friction, fracture, and earthquakes. Annu. Rev. Condens. Matter Phys. 1(1), 397–418 (2010)

    Article  Google Scholar 

  30. Ida, Y.: Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77(20), 3796–3805 (1972)

    Article  Google Scholar 

  31. Andrews, D.: Rupture models with dynamically determined breakdown displacement. Bull. Seismol. Soc. Am. 94(3), 769–775 (2004)

    Article  Google Scholar 

  32. Dieterich, J.H.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84(B5), 2161 (1979). https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  33. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method, vol. 1. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  34. Shewchuck, J.: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds.) Applied computational geometry: towards geometric engineering. Lecture notes in computer science, vol. 1148. From the First ACM Workshop on Applied Computational Geometry, pp 203–222. Springer, New York (1996)

  35. Zehnder, A.T.: Fracture mechanics. (Lecture notes in applied and computational mechanics, vol. 62). Springer, Netherlands (2012)

  36. Lawn, B.: Fracture of Brittle Solids. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  37. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  38. Sneddon, I.N.: Fourier Transforms. McGraw Hill Book Co, Inc., New York (1951)

    Google Scholar 

  39. Phan, A.V., Napier, J.A.L., Gray, L.J., Kaplan, T.: Symmetric-Galerkin BEM simulation of fracture with frictional contact. Int. J. Numer. Methods Eng. 57(6), 835–851 (2003). https://doi.org/10.1002/nme.707

    Article  Google Scholar 

  40. Lie, K.A.: An introduction to reservoir simulation using MATLAB user guide for the MATLAB reservoir simulation toolbox (MRST). SINTEF ICT, Department of Applied Mathematics (2014)

  41. Aagaard, B., Knepley, M., Williams, C., Strand, L., Kientz, S.: PyLith user manual, version 2.1.0. Computational Infrastructure for Geodynamics (CIG), University of California, Davis (2015)

Download references

Acknowledgements

The work was funded by the Research Council of Norway through grants no. 228832/E20, 267908/E20 and 250223 and Statoil ASA through the Akademia agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Ucar.

Appendix

Appendix

The analytical solutions of the induced displacements (ux, uy) and stresses (σxx, σyy, σxy) at any point (x,y) for an infinite 2D homogeneous and isotropic elastic nonporous medium containing a finite small thin fracture with constant normal- and shear-displacement discontinuities are given by Crouch and Starfield [12] as

$$\begin{array}{@{}rcl@{}} u_{x} &=&{\Delta} u_{\boldsymbol{n}_{+}}^{{\Gamma}} \left( {2\left( {1-\nu} \right)\frac{\partial f}{\partial y}-y\frac{\partial^{2}f}{\partial x^{2}}} \right)\\ &&+{\Delta} u_{\boldsymbol{\tau} _{+}}^{{\Gamma}} \left( {-\left( {1-2\nu} \right)\frac{\partial f}{\partial x}-y\frac{\partial^{2}f}{\partial x\partial y}} \right){,} \\ u_{y} &=&{\Delta} u_{\boldsymbol{n}_{+}} ^{{\Gamma}} \left( {\left( {1-2\nu} \right)\frac{\partial f}{\partial x}-y\frac{\partial^{2}f}{\partial x\partial y}} \right)\\ &&+{\Delta} u_{\boldsymbol{\tau}_{+}}^{{\Gamma}} \left( {2\left( {1-\nu} \right)\frac{\partial f}{\partial y}-y\frac{\partial^{2}f}{\partial y^{2}}} \right){,} \end{array} $$
(1)

and

$$\begin{array}{@{}rcl@{}} \sigma_{xx} &\,=\,&2\mu {\Delta} u_{\boldsymbol{n}_{+}}^{{\Gamma}} \left( {2\frac{\partial^{2}f}{\partial x\partial y}+y\frac{\partial^{3}f}{\partial x\partial y^{2}}} \right)\\ &&+ 2\mu {\Delta} u_{\boldsymbol{\tau}_{+}}^{{\Gamma}} \left( {\frac{\partial^{2}f}{\partial y^{2}}+y\frac{\partial^{3}f}{\partial y^{3}}} \right){,} \\ \sigma_{yy} &\,=\,&2\mu {\Delta} u_{\boldsymbol{n}_{+}}^{{\Gamma}} \left( {-y\frac{\partial^{3}f}{\partial x\partial y^{2}}} \right)\,+\,2\mu {\Delta} u_{\boldsymbol{\tau}_{+}}^{{\Gamma}} \left( {\frac{\partial^{2}f}{\partial y^{2}}\,-\,y\frac{\partial^{3}f}{\partial y^{3}}} \right){,} \\ \sigma_{xy} &\,=\,&2\mu {\Delta} u_{\boldsymbol{n}_{+}}^{{\Gamma}} \left( {\frac{\partial^{2}f}{\partial y^{2}}\,+\,y\frac{\partial^{3}f}{\partial y^{3}}} \right)\,+\,2\mu {\Delta} u_{\boldsymbol{\tau} _{+}}^{{\Gamma}} \left( {\!-y\frac{\partial^{3}f}{\partial x\partial y^{2}}} \right),\\ \end{array} $$
(2)

where \({{\Delta } u}_{\boldsymbol {n}_{+}}^{{{\Gamma }} }\) and \({{\Delta } u}_{\boldsymbol {\tau }_{+}}^{{{\Gamma }} }\) are the displacement discontinuities in the normal and shear directions, respectively; μ is the shear modulus; v is Poisson’s ratio; and f is the function of the position (x,y) of the field point relative to the center of the fracture. Denoting the half radius of the fracture as a, f is given as

$$\begin{array}{@{}rcl@{}} f\left( x\mathrm{,}y \right)&\,=\,&-\frac{1}{4\pi \left( 1\,-\,v \right)}\left( y\left( \tan^{-1}\frac{y}{x\,-\,a}-\tan^{-1}\frac{y}{x\,+\,a} \right) \right)\\ &&-\left( x-a \right)\ln \sqrt {\left( x\,-\,a \right)^{2}+y^{2}}\\ &&+\left( x+a \right) \ln \sqrt {\left( x+a \right)^{2}+y^{2}} \mathrm{.} \end{array} $$
(3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ucar, E., Keilegavlen, E., Berre, I. et al. A finite-volume discretization for deformation of fractured media. Comput Geosci 22, 993–1007 (2018). https://doi.org/10.1007/s10596-018-9734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9734-8

Keywords

Navigation