Computational Geosciences

, Volume 19, Issue 4, pp 781–789 | Cite as

An iterative global pressure solution for the semi-analytical simulation of geological carbon sequestration

  • Domenico Baù
  • Brent M. Cody
  • Ana González-Nicolás


Successful large-scale implementation of geological CO2 sequestration (GCS) will require the preliminary assessment of multiple potential injection sites. Risk assessment and optimization tools used in this effort typically require large numbers of simulations. This makes it important to choose the appropriate level of complexity when selecting the type of simulation model. A promising multi-phase semi-analytical method proposed by Nordbotten et al. (Environ. Sci. Technol. 43, 743–749 2009) to estimate key system attributes (i.e., pressure distribution, CO2 plume extent, and fluid migration) has been found to reduce computational run times by three orders of magnitude when compared to other standard numerical techniques. The premise of the work presented herein is that the existing semi-analytical leakage algorithm proposed by Nordbotten et al. (Environ. Sci. Technol. 43, 743–749 2009) may be further improved in computational efficiency by applying a fixed-point-type iterative global pressure solution to eliminate the need to solve large sets of linear equations at each time step. Results show that significant gains in computational efficiency are obtained with this new methodology. In addition, this modification provides the same enhancement to similar semi-analytical algorithms that simulate single-phase injection into multi-layer domains.


Semi-analytical modeling Iterative methods Geological carbon sequestration Injection site assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Bai, Z., Bischof, C., et al.: LAPACK users guide. 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)Google Scholar
  2. 2.
    Avci, C.: Evaluation of flow leakage through abandoned wells and boreholes. Water Resour. Res. 30, 2565–2578 (1994)CrossRefGoogle Scholar
  3. 3.
    Bachu, S., Bennion, D.B.: Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions. Int. J. Greenh Gas Control 3, 494–501 (2009)CrossRefGoogle Scholar
  4. 4.
    Bandilla, K.W., Kraemer, S.R., Birkholzer, J.T.: Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection. Int. J. Greenh Gas Control 8, 196–204 (2012)CrossRefGoogle Scholar
  5. 5.
    Birkholzer, J.T., Cihan, A., Zhou, Q.: Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int. J. Greenh Gas Control 7, 168–18 (2012)CrossRefGoogle Scholar
  6. 6.
    Buscheck, T.A., Sun, Y., Chen, M., et al.: Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh Gas Control 6, 230–245 (2012)CrossRefGoogle Scholar
  7. 7.
    Celia, M.A., Nordbotten, J.M., Court, B., et al.: Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int. J. Greenh Gas Control 5, 257–269 (2011)CrossRefGoogle Scholar
  8. 8.
    Cihan, A., Birkholzer, J.T., Zhou, Q.: Pressure buildup and brine migration during CO 2 storage in multilayered aquifers. Ground Water 51, 252–67 (2013)Google Scholar
  9. 9.
    Cihan, A., Zhou, Q., Birkholzer, J.T.: Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered-aquifer systems. Water Resour. Res. (2011). doi: 10.1029/2011WR010721
  10. 10.
    Court, B., Bandilla, K.W., Celia, M.A., et al.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenhouse Gas Control 10, 134–147 (2012)CrossRefGoogle Scholar
  11. 11.
    Crow, W., Carey, J.W., Gasda, S., et al.: Wellbore integrity analysis of a natural CO2 producer. Int. J. Greenh Gas Control 4, 186–197 (2010)CrossRefGoogle Scholar
  12. 12.
    Doster, F., Nordbotten, J.M., Celia, M.A.: Impact of capillary hysteresis and trapping on vertically integrated models for CO2 storage. Adv. Water Resour. 62, 465–474 (2013)CrossRefGoogle Scholar
  13. 13.
    Duguid, A., Butsch, R.J., Loizzo, M., Stamp, V.: Collection of baseline wellbore cement data in multiple wells in the same field. Energy Procedia 4, 5130–5137 (2011)CrossRefGoogle Scholar
  14. 14.
    Gasda, S., Nordbotten, J.M., Celia, M.A.: The impact of local-scale processes on large-scale CO2 migration and immobilization. Energy Procedia 4, 3896–3903 (2011)CrossRefGoogle Scholar
  15. 15.
    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geol. 13, 469–481 (2009)CrossRefGoogle Scholar
  16. 16.
    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Application of simplified models to CO2 migration and immobilization in large-scale geological systems. Int. J. Greenhouse Gas Control 9, 72–84 (2012)CrossRefGoogle Scholar
  17. 17.
    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Determining effective wellbore permeability from a field pressure test: a numerical analysis of detection limits. Environ. Geol. 54, 1207–1215 (2007). doi: 10.1007/s00254-007-0903-7
  18. 18.
    Hantush, M.S.: Modification of the theory of leaky aquifers. J Geophys Res 65(11), 3717–3725 (1960)Google Scholar
  19. 19.
    Hantush, M.S.: Nonsteady flow to flowing wells in leaky aquifers. J. Geophys. Res. 64, 1043–1052 (1959)CrossRefGoogle Scholar
  20. 20.
    Hantush, M.S., Jacob, C.E.: Nonsteady radial flow in an infinite leaky aquifer. Am. Geophys. Union Trans. 36, 95–100 (1955)CrossRefGoogle Scholar
  21. 21.
    Heße, F., Prykhodkom, V., Attinger, S.: Assessing the validity of a lower-dimensional representation of fractures for numerical and analytical investigations. Adv. Water Resour. 56, 35–48 (2013)CrossRefGoogle Scholar
  22. 22.
    Huang, X., Bandilla, K.W., Celia, M.A., Bachu, S.: Basin-scale modeling of CO2 storage using models of varying complexity. Int. J. Greenhouse Gas Control 20, 73–86 (2014)CrossRefGoogle Scholar
  23. 23.
    Hunt, B.: Flow to a well in a multiaquifer system. Water Resour. Res. 21, 1637–1641 (1985)CrossRefGoogle Scholar
  24. 24.
    Javandel, I., Witherspoon, P.: A semianalytical solution for partial penetration in two-layer aquifers. Water Resour. Res. 16, 1099–1106 (1980)CrossRefGoogle Scholar
  25. 25.
    Juanes, R., MacMinn, C.W., Szulczewski, M.L.: The footprint of the CO 2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82, 19–30 (2009)CrossRefGoogle Scholar
  26. 26.
    Kumar, N., Bryant, S.L.: Semi-analytical model to determine perforation interval for secure CO2 storage in saline aquifers. Energy Procedia 1, 3071–3078 (2009)CrossRefGoogle Scholar
  27. 27.
    Lacombe, S., Sudicky, E.: Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour. (1995)Google Scholar
  28. 28.
    Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W.: Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media 79, 265–284 (2008)CrossRefGoogle Scholar
  29. 29.
    Neuman, S., Witherspoon, P.: Applicability of current theories of flow in leaky aquifers. Water Resour. Res. 5, 817–829 (1969)CrossRefGoogle Scholar
  30. 30.
    Nogues, J., Court, B., Dobossy, M., et al.: A methodology to estimate maximum probable leakage along old wells in a geological sequestration operation. Int. J. Greenhouse Gas Control 7, 39–47 (2012)CrossRefGoogle Scholar
  31. 31.
    Nogues, J., Nordbotten, J., Celia, M.: Detecting leakage of brine or CO2 through abandoned wells in a geological sequestration operation using pressure monitoring wells. Energy Procedia 4, 3620–3627 (2011)CrossRefGoogle Scholar
  32. 32.
    Nordbotten, J., Celia, M.: Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39, 602–611 (2005)CrossRefGoogle Scholar
  33. 33.
    Nordbotten, J., Celia, M.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 42, 1–10 (2006a)Google Scholar
  34. 34.
    Nordbotten, J., Celia, M.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006b)CrossRefGoogle Scholar
  35. 35.
    Nordbotten, J., Celia, M.: Geological storage of CO2. Wiley (2012)Google Scholar
  36. 36.
    Nordbotten, J., Celia, M., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40, 1–10 (2004)Google Scholar
  37. 37.
    Nordbotten, J., Celia, M., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58, 339–360 (2005)CrossRefGoogle Scholar
  38. 38.
    Nordbotten, J., Flemisch, B.: Uncertainties in practical simulation of CO2 storage. Int. J. Greenhouse Gas Control 9, 234–242 (2012)CrossRefGoogle Scholar
  39. 39.
    Nordbotten, J., Kavetski, D., Celia, M., Bachu, S.: Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743–749 (2009)CrossRefGoogle Scholar
  40. 40.
    Takahashi, W.: Nonlinear functional analysis: fixed point theory and its applications. Yokohama Publishers, Yokohama (2000)Google Scholar
  41. 41.
    Theis, C.V.: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am. Geophys. Union Trans. 16, 519–524 (1935)CrossRefGoogle Scholar
  42. 42.
    Zhou, Q., Birkholzer, J., Tsang, C.: A semi-analytical solution for large-scale injection-induced pressure perturbation and leakage in a laterally bounded aquifer–aquitard system. Transp. Porous Media 78, 127–148 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Domenico Baù
    • 1
  • Brent M. Cody
    • 2
  • Ana González-Nicolás
    • 3
  1. 1.Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Natural Resources Consulting Engineers Inc.Fort CollinsUSA
  3. 3.Department of Civil and Environmental EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations