Skip to main content
Log in

The Electronic Structure of Heteroannelated Cyclooctatetraenes and their UV-Vis Absorption Spectra

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The electronic structure and the UV-Vis absorption spectra of heteroannelated cyclooctatetraene derivatives are studied by density functional theory and by its non-stationary variant, the time-dependent density functional theory. The cyclooctatetraene ring is shown to be planar in all of the molecules considered, except the annelated fluorene and dibenzothiophene derivatives, and exhibits an antiaromatic character according to the magnetic and structural aromaticity criteria. The double ionization of annelated cyclooctatetraene molecules (quasi-circulenes) causes a change in the aromatic properties of cyclooctatetraene, which generally gaines aromaticity by double reduction and becomes non-aromatic upon double oxidation. The time-dependent density functional theory calculations enable the interpretation of electronic absorption spectra of recently synthesized quasi-circulenes and to predict the spectra of new, hypothetical molecules, which are important for the general theoretical understanding of hetero[8]circulene spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. F. Wilcox, Jr., J. P. Uetrecht, and K. K. Grohman, J. Am. Chem. Soc., 94, 2532 (1972).

    Article  CAS  Google Scholar 

  2. C. F. Wilcox, J. Mol. Struct.: THEOCHEM, 759, 125 (2006).

    Article  CAS  Google Scholar 

  3. I. Willner and M. Rabinovitz, J. Org. Chem., 45, 1628 (1980).

    Article  CAS  Google Scholar 

  4. K. Aita, T. Ohmae, M. Takase, K. Nomura, H. Kimura, and T. Nishinaga, Org. Lett., 15, 3522 (2013).

    Article  CAS  Google Scholar 

  5. M. B. Groen, H. Schadenberg, and H. Wynberg, J. Org. Chem., 36, 2797 (1971).

    Article  Google Scholar 

  6. J. H. Dopper, D. Oudman, and H. Wynberg, J. Am. Chem. Soc., 95, 3692 (1973).

    Article  CAS  Google Scholar 

  7. Y. Shen and C.-F. Chen, Chem. Rev., 112, 1463 (2012).

    Article  CAS  Google Scholar 

  8. J. H. Dopper, D. Oudman, and H. Wynberg, J. Org. Chem., 40, 3398 (1975).

    Article  CAS  Google Scholar 

  9. K. Yu. Chernichenko, E. S. Balenkova, and V. G. Nenajdenko, Mendeleev Commun., 18, 171 (2008).

    Article  CAS  Google Scholar 

  10. A. Rajca, M. Miyasaka, S. Xiao, P. J. Boratynski, M. Pink, and S. Rajca, J. Org. Chem., 74, 9105 (2009).

    Article  CAS  Google Scholar 

  11. T. Ohmae, T. Nishinaga, M. Wu, and M. Iyoda, J. Am. Chem. Soc., 132, 1066 (2010).

    Article  CAS  Google Scholar 

  12. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  14. M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 77, 3654 (1982).

    Article  CAS  Google Scholar 

  15. S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys., 55, 117 (1981).

    Article  Google Scholar 

  16. S. I. Gorelsky, SWizard program, University of Ottawa, Ottawa (2010). http://www.sg-chem.net.

    Google Scholar 

  17. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. v. R. Schleyer, Chem. Rev., 105, 3842 (2005).

    Article  CAS  Google Scholar 

  18. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. v. E. Hommes, J. Am. Chem. Soc., 118, 6317 (1996).

    Article  CAS  Google Scholar 

  19. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990).

    Article  CAS  Google Scholar 

  20. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).

    Article  CAS  Google Scholar 

  21. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, J. Comp. Chem., 4, 294 (1983).

    Article  CAS  Google Scholar 

  22. R. W. F. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford (1990).

    Google Scholar 

  23. T. A. Keith, AIMAll, Version 10.07.25, 2010; http://aim.tkgristmill.com.

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian Inc., Wallingford (2009).

    Google Scholar 

  25. P. B. Karadakov, J. Phys. Chem. A, 112, 12707 (2008).

    Article  CAS  Google Scholar 

  26. S. J. Thompson, F. L. Emmert 3rd, and L. V. Slipchenko, J. Phys. Chem. A., 116, 3194 (2012).

    Article  CAS  Google Scholar 

  27. C. B. Nielsen, T. Brock-Nannestad, P. Hammershøj, T. K. Reenberg, M. Schau-Magnussen, D. Trpcevski, T. Hensel, R. Salcedo, G. V. Baryshnikov, B. F. Minaev, and M. Pittelkow, Chem.-Eur. J., 19, 3898 (2013).

    Article  CAS  Google Scholar 

  28. T. Hensel, D. Trpcevski, C. Lind, R. Grosjean, P. Hammershøj, C. B. Nielsen, T. Brock-Nannestad, B. E. Nielsen, M. Schau-Magnussen, B. Minaev, G. V. Baryshnikov, and M. Pittelkow, Chem.–Eur. J., 19, 17097 (2013).

    Article  CAS  Google Scholar 

  29. G. V. Baryshnikov, B. F. Minaev, M. Pittelkow, C. B. Nielsen, and R. Salcedo, J. Mol. Model., 19, 847 (2013).

    Article  CAS  Google Scholar 

  30. G. V. Baryshnikov, B. F. Minaev, N. N. Karaush, and V. A. Minaeva, Phys. Chem. Chem. Phys., 16, 6555 (2014).

    Article  CAS  Google Scholar 

  31. K. Y. Chernichenko, V. V. Sumerin, R. V. Shpanchenko, E. S. Balenkova, and V. G. Nenajdenko, Angew. Chem., Int. Ed., 45, 7367 (2006).

    Article  CAS  Google Scholar 

  32. A. Dadvand, F. Cicoira, K. Yu. Chernichenko, E. S. Balenkova, R. M. Osuna, F. Rosei, V. G. Nenajdenko, and D. F. Perepichka, Chem. Commun., 5354 (2008).

  33. T. Fujimoto, M. M. Matsushita, H. Yoshikawa, and K. Awaga, J. Am. Chem. Soc., 130, 15790 (2008).

    Article  CAS  Google Scholar 

  34. N. N. Karaush, B. F. Minaev, G. V. Baryshnikov, and V. A. Minaeva, Opt. Spectrosc., 116, 33 (2014).

    Article  CAS  Google Scholar 

  35. C. F. Wilcox, Jr., J. P. Uetrecht, G. D. Grantham, and K. G. Grohmann, J. Am. Chem. Soc., 97, 1914 (1975).

    Article  CAS  Google Scholar 

  36. T. Nishinaga, T. Ohmae, and M. Iyoda, Symmetry, 2, 76 (2010).

    Article  CAS  Google Scholar 

  37. S. Radenković, I. Gutman, and P. Bultinck, J. Phys. Chem. A., 116, 9421 (2012).

    Article  Google Scholar 

  38. A. Yu. Sokolov, D. Brandon Magers, J. I. Wu, W. D. Allen, P. v. R. Schleyer, and H. F. Schaefer III, J. Chem. Theory Comput., 9, 4436 (2013).

    Article  CAS  Google Scholar 

  39. H. Fliegl, S. Taubert, O. Lehtonen, and D. Sundholm, Phys. Chem. Chem. Phys., 13, 20500 (2011).

    Article  CAS  Google Scholar 

  40. R. R. Valiev and V. N. Cherepanov, Int. J. Quant. Chem., 113, 2563 (2013).

    Article  CAS  Google Scholar 

  41. R. R. Valiev, H. Fliegl, and D. Sundholm, J. Phys. Chem. A, 117, 9062 (2013).

    Article  CAS  Google Scholar 

  42. O. Loboda, I. Tunell, B. Minaev, and H. Agren, Chem. Phys., 312, 299 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Minaev.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 381-396, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baryshnikov, G.V., Karaush, N.N. & Minaev, B.F. The Electronic Structure of Heteroannelated Cyclooctatetraenes and their UV-Vis Absorption Spectra. Chem Heterocycl Comp 50, 349–363 (2014). https://doi.org/10.1007/s10593-014-1482-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1482-7

Keywords

Navigation