Skip to main content

Advertisement

Log in

Genetic assessment, illegal trafficking and management of the Mediterranean spur-thighed tortoise in Southern Spain and Northern Africa

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Wild populations of many species are declining as a result of habitat destruction and climate change but also through the over-collection for wild meat and the pet trade. With a long history of trade around the Mediterranean, populations of the spur-thighed tortoise (Testudo graeca graeca) have become highly disturbed. In this study we utilise a molecular approach to investigate the diversity, population admixture and structure of T. g. graeca populations in northern Africa and southern Spain, as well as to obtain an insight into the origin of newly established populations in the south of Europe. We infer this from the sequencing of two partial regions of the mitochondria (12s rRNA + cyt b) and genotyping at 16 microsatellite markers in 448 tortoises. Our results are consistent with the hypothesis that Spanish populations were founded from North Africa, the consequence of multiple introductions or exchanges in genetic material as a result of trans-oceanic dispersal. Despite the trade of individuals between both sides of the Gibraltar Strait, our analysis of population structure showed clear differences between both the African and European populations, suggesting an incipient evolutionary lineage in southeast of Spain. As such, these populations possess unique genetic identities and should be treated as different management units. Surprisingly, the genetic data identified a great deal of diversity contained within pet (captive) stock and also allowed us to infer hybrids among individuals with another species of terrestrial tortoise from northern Spain (T. hermanni hermanni). Additionally, our results provide insight into the local movement and trade of individuals that has occurred around the Mediterranean basin (between northern Africa and southern Spain) and as such provides guidance for the effective management of T. g. graeca captive stock and the illegal trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez Y, Mateo JA, Andreu AC, Diaz-Paniagua C, Diez A, Bautista JM (2000) Mitochondrial DNA haplotyping of Testudo graeca on both continental sides of the straits of Gibraltar. J Hered 91:39–41

    Article  CAS  PubMed  Google Scholar 

  • Andreu AC, López-Jurado LF (1998) Los reptiles ibéricos: género Testudo. In: Ramos MA et al (eds) Fauna Ibérica. Reptiles. Museo Nacional de Ciencias Naturales, CSIC, Madrid

    Google Scholar 

  • Asian Turtle Trade (2000) Proceedings of a workshop on conservation and trade of freshwater turtles and tortoises in Asia. In: van Dijk PP, Stuart BL, Rhodin AGJ (eds) Chelonian Research Monographs No. 2

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtles’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol 9:457–473

    CAS  PubMed  Google Scholar 

  • Bailón S (2001) Revisión de la asignación a Testudo cf. graeca del yacimiento del Pleistoceno superior de Cueva Horá (Darro, España). Rev Esp Herpetol 15:61–65

    Google Scholar 

  • Bandelt HJ (1999) Combination of data in phylogenetic analysis. Plant Syst Evol 9:355–361

    Google Scholar 

  • Benson RH, Rakic-El Beid K, Bonaduce G (1991) An important current reversal, influx in the Rifian corridor, Morroco, at the Tortonian-Messinian boundary: the end of the Tethys ocean. Paleoceanography 6:164–172

    Article  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellite. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Busack SD (1986) Biogeographic analysis of the herpetofauna separated by the formation of the Strait of Gibraltar. Natl Geogr Res 2:339–348

    Google Scholar 

  • Chkhikvadze VM (1983) Iskopaemye cherepakhi Kavkaza i Severnogo Prichernomorya. Metsniereba, Tbilisi

    Google Scholar 

  • Chkhikvadze VM (1989) Neogenovye cherepakhi SSSR. Metsniereba, Tbilisi

    Google Scholar 

  • Ciofi C, Milinkovitch MC, Gibbs JP, Caccoce A, Powell JR (2002) Microsatellite analysis of genetic divergence among populations of Giant Galápagos Tortoises. Mol Ecol 11:2265–2283

    Article  CAS  PubMed  Google Scholar 

  • Connor M (1989) Molecular biology and the turtle: the desert tortoise and its relatives. Tortuga Gaz 25:10–11

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two test for detecting recent population bottleneck from allele frequency data. Genetics 1444:2001–2014

    Google Scholar 

  • Crandall KA, Bininda-Edmonds O, Mace G, Wayne RK (2000) Considering evolutionary processes in conservation biology: an alternative to “evolutionary significants units”. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Danilov IG (2005) Die fossilen Schildkröten Europas. In: Fritz U (ed) Handbuch der Reptilien und Amphibien Europas. Band 3/IIIB: Schildkröten (Testudines) II. Aula-Verlag, Wiebelsheim

    Google Scholar 

  • Dupre A (2002) Situation de Testudo graeca au Maghreb. Chelonii 3:300–301

    Google Scholar 

  • Edwards T, Goldberg CS, Kaplan ME, Schwalbe CR, Swann DE (2003) PCR primers for microsatellite loci in the desert tortoise (Gopherus agassizii, Testudinidae). Mol Ecol Notes 3:589–591

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrández M (2003) Illegal trade of Greek tortoise (Testudo graeca) coming from Algeria admitted in the Wildlife Preservation Centre Santa Faz Alicante (Spain). Presented at the second international congress on chelonian conservation, Dakar, Senegal, 18–22 June 2003

  • Forlani A, Crestanello B, Mantovani S, Livoreil B, Zane L, Bertorelle G, Congiu L (2005) Identification and characterization of microsatellite markers in Hermann’s tortoise (Testudo hermanni, Testudinidae). Mol Ecol Notes 5:228–230

    Article  CAS  Google Scholar 

  • Fritz U, Hundsdörfer AK, Široký P, Auer M, Kami H, Lehmann J, Mazanaeva LF, Türkozan O, Wink M (2007) Phenotipic plasticity leads to incongruence between morphology-based taxonomy and the genenetic differentiation in western Paleartic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphib-Reptil 28:97–121

    Article  Google Scholar 

  • Fritz U, Harris DJ, Fahd S, Rouag R, Graciá E, Giménez A, Siroky P, Kalboussi M, Jdeidi TB, Hundsdörfer AK (2009) Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: old complex divergence in North Africa and recent arrival in Europe. Amphib-Reptil 30:63–80

    Article  Google Scholar 

  • González J (1993) Rèunion Island. Still a land tortoises. Chelonian Conserv Biol 1:51–52

    Google Scholar 

  • Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Kabisch K (2001) Bastardisierung von Testudo horsfieldii (GRAY, 1844) und Testudo graeca ibera (PALLAS, 1814). Sauria 23:7–11

    Google Scholar 

  • King TL, Julian SE (2004) Conservation of microsatellite DNA flanking sequence across 13 Emyidid genera assayed with novel bog turtle (Glytemys muhlenbergii) loci. Conserv Genet 5:719–725

    Article  Google Scholar 

  • Kirsche W (1984) Bastardierung von Testudo horsfieldii (GRAY, 1844) und Testudo h. hermanni (GMELIN). Amphib-Reptil 5:311–322

    Article  Google Scholar 

  • Klemens MW, Thorbjarnarson JB (1995) Reptiles as a food resource. Biodivers Conserv 4:218–298

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lambert MRK (1979) Trade and the mediterranean tortoises. Oryx 15:81–82

    Article  Google Scholar 

  • Lapparent de Broin F (2000) African chelonians from the Jurassic to the present: a preliminary catalog of the African fossil chelonians. Palaeontol Afr 36:43–82

    Google Scholar 

  • Manel S, Berthier P, Luikart G (2002) Detecting poaching: identifying the origin of individuals using Bayesian assigment tests and multi-locus genotypes. Conserv Biol 16:650–659

    Article  Google Scholar 

  • Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1997) Microsat v.1.5d: a computer program for calculating various statistics on microsatellite allele data

  • Moon JC, McCoy ED, Mushinsky HR, KarlMultiple SA (2006) Multiple paternity and breeding system in the gopher tortoise, Gopherus polyphemus. J Hered 97:150–157

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    CAS  PubMed  Google Scholar 

  • Parham JF, Macey JR, Papenfuss TJ, Feldman CR, Türkozan O, Polymeni R, Boore J (2006) The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens: with coments on mitochondrial genomic features, phylogenetic, and paleogeography. Mol Phylogenet Evol 38:50–64

    Article  CAS  PubMed  Google Scholar 

  • Pariset L, Cappuccio I, Ajmone Marsan P, Dunner S, Luikart G, Obexer-Ruff G, Peter C, Marletta D, Pilla F, Valentini A (2006) Assessment of population structure by single nucleotide polymorphisms (SNPs) in goat breeds. J Chromatogr B 833:117–120

    Article  CAS  Google Scholar 

  • Pérez I, Gimenez A, Sanchez-Zapata JA, Anadón JD, Martínez M, Esteve MA (2004) Non-commercial of spur-thighed tortoises (Testudo graeca graeca): a cultutal problem in Southeast Spain. Biol Conserv 118:175–181

    Article  Google Scholar 

  • Pleguezuelos JM, Márquez R, Lizana M (eds) (2002) Atlas y libro rojo de los anfibios y reptiles de España. Dirección General de la Conservación de la Naturaleza-Asociación Herpetológica Española, 2nd edn. Spain, Madrid

    Google Scholar 

  • Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Soc Syst Biol 53:793–808

    Article  Google Scholar 

  • Posada D, Crandall K (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 1:817–818

    Article  Google Scholar 

  • Posada D, Crandall K (2001) Performance of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure from multilocus genotypes data. Genetics 155:945–949

    CAS  PubMed  Google Scholar 

  • Ramos-Onsins S, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed J, Tollit D, Thompson P, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol 6:225–234

    Article  CAS  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Roques S, Díaz-Paniagua C, Andreu AC (2004) Microsatellite markers reveal multiple paternity and sperm storage in the Mediterrranean spur-thighed tortoise, Testudo graeca. Can J Zool 82:153–159

    Article  CAS  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messenger X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and others methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwartz T, Osentoski M, Lamb T, Karl A (2003) Microsatellite loci for the North American tortoises (genus Gopherus) and their applicability to other turtle species. Mol Ecol Notes 3:283–286

    Article  CAS  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* Phylogenetic analysis using parsomony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takahata N (1987) On the overdispersed molecular clock. Genetics 116:169–179

    CAS  PubMed  Google Scholar 

  • Thorbjarnarson JB, Lagueux CJ, Bolze D, Klemens MW, Meylan AB (2000) Human use of turtles: a worldwide perspective. In: Klemens MW (ed) Turtle conservation. Smithsonian Institution Press, Washington, pp 33–88

    Google Scholar 

  • Turtle Conservation Fundation (2002) A global action plan for conservation of tortoises and freshwater turtles. Strategy and funding prospectus 2002–2007. Washington, DC: Conservation International and Chelonian Research Foundation, 30 pp

  • van der Kuyl AC, Ballasina D, Dekker J, Maas J, Willensem RE, Goudsmit J (2002) Phylogenetic relationships among the species of the Genus Testudo (Testudines: Testudinidae) inferred from mitochondrial 12s rRNA gene sequences. Mol Phylogenet Evol 22:174–183

    Article  PubMed  Google Scholar 

  • van der Kuyl AC, Ballasina D, Zorgdrager F (2005) Mitochondrial haplotype diversity in the tortoises species Testudo graeca from North Africa and the middle East. BMC Evol Biol 5:29–37

    Article  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Woodbury AM (1952) Hybrids of Gopherus berlandieri and G. agassizii. Herpetologica 8:33–36

    Google Scholar 

  • Zhang D, Hewitt G (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584

    Article  CAS  PubMed  Google Scholar 

  • Znari M, Germano DJ, Mace JC (2005) Growth and population structure of the Moorish Tortoise (Testudo graeca graeca) in Westcentral Morocco: possible effects of over-collecting for the tourist trade. J Arid Environ 62:55–74

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to Fundación Global Nature (Murcia Region, Spain); the Wildlife Rehabilitation Center “El Valle” (Murcia Region, Spain); Marcos Fernández (Wildlife Rehabilitation Center Santa Faz, Alicante, Spain) and Albert Martinez-Silvestre (CRARC, Barcelona, Spain). Thanks also to Peter Spencer for his revisions of the manuscript and referees for their comments and suggestions that helped to improve the previous manuscript. The financial support was provided by both Fundación Séneca, Spain (Proyect 00655/PI/04) and by MEC, Spain (Grant AP-2004-4048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Salinas.

Appendix

Appendix

See Appendix Table 3.

Table 3 Testudinidae microsatellites tested in T. g. graeca and T. hermanni, showing the species in which they were isolated and characterized

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salinas, M., Altet, L., Clavel, C. et al. Genetic assessment, illegal trafficking and management of the Mediterranean spur-thighed tortoise in Southern Spain and Northern Africa. Conserv Genet 12, 1–13 (2011). https://doi.org/10.1007/s10592-009-9982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9982-1

Keywords

Navigation