Skip to main content
Log in

Preconditioned iterative regularization in Banach spaces

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Regularization methods for inverse problems formulated in Hilbert spaces usually give rise to over-smoothness, which does not allow to obtain a good contrast and localization of the edges in the context of image restoration.

On the other hand, regularization methods recently introduced in Banach spaces allow in general to obtain better localization and restoration of the discontinuities or localized impulsive signals in imaging applications.

We present here an expository survey of the topic focused on the iterative Landweber method. In addition, preconditioning techniques previously proposed for Hilbert spaces are extended to the Banach setting and numerically tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A complementary effect can be observed for the other duality map \(J_{s^{*}}^{X^{*}}=J_{2}^{L^{p^{*}}}\) which acts on the reconstructions. Since p >2 for 1<p<2, the factor \(|x|^{p^{*}-1}\) in (8) tends to emphasize the largest components and to reduce the smallest ones; in other words, the contrast of the reconstructed image is somehow enhanced, avoiding over-smoothness.

References

  1. Asplund, E.: Fréchet differentiability of convex functions. Acta Math. 121, 31–47 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd revised edn. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  3. Benvenuto, F., Zanella, R., Zanni, L., Bertero, M.: Nonnegative least-squares image deblurring: improved gradient projection approaches. Inverse Probl. 26, 025004 (2010) (18 pp.)

    Article  MathSciNet  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publ., Bristol (1998)

    Book  MATH  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  6. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25, 015002 (2009) (23 pp.)

    Article  MathSciNet  Google Scholar 

  7. Brianzi, P., Di Benedetto, F., Estatico, C.: Improvement of space-invariant image deblurring by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canuto, C., Urban, K.: Adaptive optimization of convex functionals in Banach spaces. SIAM J. Numer. Anal. 42, 2043–2075 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally-relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30, 473–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Comput. 9, 766–771 (1988)

    Article  MATH  Google Scholar 

  11. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci., Ser. II, Anno IX XVI, 326–333 (1938)

    Google Scholar 

  12. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MATH  Google Scholar 

  13. Elfving, T., Nikazad, T., Hansen, P.C.: Semi-convergence and relaxation parameters for a class of SIRT algorithm. Electron. Trans. Numer. Anal. 37, 321–336 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  15. Estatico, C., Pastorino, M., Randazzo, A.: A novel microwave imaging approach based on regularization in L p Banach spaces. IEEE Trans. Antennas Propag. 60, 3373–3381 (2012)

    Article  MathSciNet  Google Scholar 

  16. Hanke, M., Nagy, J.: Inverse Toeplitz preconditioners for ill-posed problems. Linear Algebra Appl. 284, 137–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hanke, M., Nagy, J., Vogel, C.: Quasi-Newton approach to nonnegative image restorations. Linear Algebra Appl. 316, 223–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  19. Hein, T., Kazimierski, K.S.: Accelerated Landweber iteration in Banach spaces. Inverse Probl. 26, 055002 (2010) (17 pp.)

    Article  MathSciNet  Google Scholar 

  20. Hein, T., Kazimierski, K.S.: Modified Landweber iteration in Banach spaces—convergence and convergence rates. Numer. Funct. Anal. Optim. 31, 1158–1189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaltenbacher, B.: Some Newton-type methods for the regularization of nonlinear ill-posed problems. Inverse Probl. 13, 729–753 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamm, J., Nagy, J.: Kronecker product and SVD approximations in image restoration. Linear Algebra Appl. 284, 177–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  24. Natterer, F.: The Mathematics of Computerized Tomography. John Wiley, New York (1986)

    MATH  Google Scholar 

  25. Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13, 441–464 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rieder, A.: On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Probl. 15, 309–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roggemann, M.C., Welsh, B.: Imaging Through Turbulence. CRC Press, Boca Raton (1996)

    Google Scholar 

  28. Scherzer, M.O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22, 311–329 (2006)

    Article  MATH  Google Scholar 

  30. Trefethen, L., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Estatico.

Additional information

This work was partially supported by MIUR grant number 20083KLJEZ, and by GNCS-INDAM projects “Analisi di strutture nella ricostruzione di immagini e monumenti” and “Precondizionamento e metodi Multigrid per il calcolo veloce di soluzioni accurate”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brianzi, P., Di Benedetto, F. & Estatico, C. Preconditioned iterative regularization in Banach spaces. Comput Optim Appl 54, 263–282 (2013). https://doi.org/10.1007/s10589-012-9527-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9527-2

Keywords

Navigation