In this section, we present “snapshot” example case studies of contextual vulnerabilities in three locations. Utah County (Utah) and Doña Ana (New Mexico) were selected, because both rank first in their states for crop sales (USDA NASS 2014). In these first two counties, we narrow down to the production of specific commodities that dominate county income (tart cherries and pecans) to demonstrate the role of institutional factors. Cochise County ranks sixth in Arizona for crop sales, but was selected as an example because it is one of the few locations in the Southwest where there has been research specifically on contextual vulnerability of agricultural communities that highlights the importance of capital assets and institutional factors (Vasquez-Leon et al. 2003; Vasquez-Leon 2009). These snapshots are not full vulnerability assessments and the examples given here comprise necessarily incomplete contextual analysis. We intend these examples to show that specific factors might feature prominently at one location or for a specific commodity, but may have less relevance at another location or for a different commodity.
Utah County tart cherry production
Utah State is the second largest producer of tart cherries (Prunus cerasus) in the USA, albeit a distant second behind Michigan (USDA NASS 2014) and Utah County leads the state in tart cherry production. Growing tart cherries can be a risky enterprise, because cherry trees are sensitive to multiple environmental stresses, and cherry orchards require a long investment period (at least 6 years after planting) before farmers see a return from their crop (Thornsbury and Martinez 2012). From the core system perspective (Fig. 2), climate change exposes cherry trees to higher temperatures in summer, later onset of cold temperatures in fall, reduced chilling hours in winter, and earlier spring onset. These factors reduce yield, impair fruit quality, and, in the worst-case scenario, cause crop failure from freeze-induced blossom damage. Earlier spring onset is the most a critical factor exposing growers to losses because it increases risk of bud exposure to a late hard frost or freeze event (Winkler et al. 2013). Frost and freeze events were the primary causes of loss to Utah County’s tart cherry crop between 2001 and 2016 (USDA RMA 2017). There are management interventions that can help cherry growers respond to adverse climate events, but these represent higher input costs, adding another source of economic stress on cherry growers besides the long investment period. Thus, the ability of growers to cope with climate events will depend upon their access to capital assets.
Also represented in the core part of Fig. 2, population growth and rapid urbanization in Utah County contribute to the potential impacts from climate change. Between 2010 and 2016, Utah County population grew by 13.8% to almost 600,000, primarily through natural increase (USDA ERS 2017), and population is likely to more than double by mid-century (Envision Utah 2016). Estimates of land use change suggest that half the remaining farmland in Utah County (almost 26,000 ha) will be developed by 2050 (Envision Utah 2016).
One adaptation option in response to climate change would be for farmers to move out of tart cherry farming and into other crops. Responding to urbanization, another more drastic option would be to sell land to developers (where permitted). However, there is insufficient evidence in agricultural census data to show that famers are moving out of tart cherries either to other crops or through land sales, despite warming temperatures through the 2000s and increasing pressure from urban expansion. On the contrary, tart cherry orchard area has steadily increased since 2002, with non-bearing area (presumably newly planted orchards) doubling between 2007 and 2012 (USDA NASS 2014). This would suggest that despite the risks of failed harvests, there are good reasons for farmers to invest more land area and more capital in tart cherries.
With reference to the core part of Fig. 2, the discussion of tart cherries so far would suggest that tart cherry producers are very exposed to climate and development-related stressors that could result in crop failure. However, crop failure does not necessarily translate into deleterious impacts on farmers’ income or livelihoods. In terms of the institutional context, farm scale biophysical and economic pressures exist alongside national policies and market forces and it is these factors that reduce vulnerability for tart cherry producers in Utah County. For example, low tart cherry yields, low prices, low quality, or any combination of events can be protected through insurance policies subsidized by the USDA RMA (USDA RMA 2017).
Vulnerability is also affected by markets, including the price received for a given commodity because these factors tie into farm income and livelihood security. In this respect, the importance of the institutional context is exemplified by the disastrous national tart cherry harvest in 2002. Domestic tart cherry production varies widely from year to year because around 75% of the nation’s tart cherry crop is concentrated in Michigan where a single weather event such as a late spring freeze can have a disproportionately large impact on aggregate supplies (White and Kesecker 2007). In 2002, Michigan lost 95% of their crop to a late freeze, and at the same time, Utah lost 75% of their crop through frost (USDA NASS 2002). After the massive 2002 crop failures, domestic customers turned to imported cherries. Before this time, US cherry markets had been isolated from foreign markets, but since 2002, imports have remained high (Thornsbury and Martinez 2012). However, strong national institutional support maintains stable markets for cherry growers, reducing their vulnerability to climate shocks, either locally in Utah County or over 1500 miles away in Michigan. One of the ways in which the tart cherry industry protects prices received by farmers is through a Federal Marketing Order administered by the Cherry Industry Administrative Board (CIAB). The CIAB’s main purpose is to balance supply and demand, but they also run promotional campaigns to expand demand for tart cherries (Milkovich 2015). Two other “pillars” supporting the tart cherry industry are the super-cooperative CherrCo which stabilizes prices for frozen cherries and the Cherry Marketing Institute, which works to expand new markets (Milkovich 2015).
Doña Ana County pecan nut production
Doña Ana County in southern New Mexico is bisected by a thin ribbon of cropland that follows the north-south course of the Rio Grande valley below Elephant Butte Reservoir. Pecan (Carya illinoinensis) is the primary income-producing crop in Doña Ana and the crop covering the largest area (~ 12,000 ha), ahead of alfalfa (8000 ha) and other common southwestern field crops. Agricultural censuses show pecan orchard area steadily increasing since 2002. (USDA NASS 2014), likely driven by demand from China, especially since 2007 (Grauke et al. 2016). Although Doña Ana faces similar issues to Utah County with respect to loss of agricultural land to development, it is at a much smaller scale. Doña Ana population grew by 2.4% between 2010 and 2016, to just over 210,000 (USDA ERS 2017).
With respect to the core part of Fig. 2, some of the critical climate-related events that impair pecan production in New Mexico include late spring and early autumn freezes and drought (Grauke et al. 2016). And according to the RMA, main causes of loss for Doña Ana pecan nuts between 2001 and 2016 were excessive windiness and hail (USDA RMA 2017). This RMA report is interesting because irrigation supply failure (insufficient water affected production) was the main climate-related cause of loss for all insured crops in Doña Ana between 2001 and 2016. The reason why pecan nut production was less impacted by irrigation supply failure is not clear but RMA findings may imply that pecan nut producers with crop insurance have good access to groundwater. The annual water needs for pecan trees in this region are 15,000 to 18,000 cubic meters per hectare, of which under half is supplied by surface water (Wells 2014). In any event, irrigation supply failure as a cause of loss may become more significant to pecan growers in the future. With hotter temperatures, increasing evaporative demand, and a longer growing season, pecan orchards will require increased irrigation to prevent production losses or damage to crop quality. In times of drought, farmers may rely entirely on groundwater pumping, even though this raises the costs of production and exposes crops to greater levels of salinity (Ward 2014). The estimated 50% mid-century decline in Rio Grande flows below Elephant Butte Reservoir flows (Llewellyn and Vaddey 2013) will impact pecan growers, driving greater dependence on the more expensive groundwater supplies. Water shortages will also be exacerbated by increasing demands from the region’s growing urban population and by increasing groundwater salinity (Hargrove et al. 2013).
Here, the institutional context of water rights adds complexity to future water supply scenarios and demonstrates the need to understand institutional drivers and biophysical drivers of vulnerability. Doña Ana shares borders and Rio Grande water with Mexico and Texas, and it is a region of highly contentious water issues. In 2013, in the latest of a series of legal wrangles, Texas submitted a complaint before the US Supreme Court claiming that New Mexico is using water in excess of its apportionment under the 1938 Rio Grande Compact (Wheat 2015). If the Supreme Court rules in favor of Texas, it is possible that limitations on groundwater pumping in Doña Ana may be imposed (Wheat 2015), thus affecting one of the means by which Doña Ana pecan growers supplement their surface water.
Under climate change and possible reduced allocations of water, an aspect of New Mexico Water Law may result in differential impacts on Doña Ana surface water users and is an example of local institutional context. New Mexico uses the legal doctrine of prior appropriation, or “first in time, first in right” for water allocation. In times of shortage, senior water rights holders receive their water from the available water supply before junior water rights holders. The New Mexico Office of the State Engineer (OSE) launched the Active Water Resource Management initiative to build the infrastructure to conduct priority administration (New Mexico Office of the State Engineer 2004). In future, junior water rights holders could be more vulnerable to water scarcity than senior water rights holders, although the OSE stresses that a “priority call” should be a measure of last resort.
Recent events have uncovered another source of contextual vulnerability for Doña Ana pecan growers. In Fig. 2, we distinguished between sub-national markets (local to regional institutions) and international markets because in the production of any commodity, there will be producers selling their products locally, regionally, or internationally. In the case of pecan farmers in Doña Ana, farmers have the option to sell their pecans to commercial buyers, who then sell on to international markets. In March 2018, China, the largest importer of pecans from the USA imposed higher tariffs on multiple US products in response to new US tariffs on Chinese aluminum and steel. US pecan nuts are now subject to a 22% tariff, up from 7%. This gives Mexican, South African, and Australian pecan nuts a competitive advantage in Chinese markets and may ultimately have impacts on farmers’ profits in the USA (Pecan Report 2018).
Cochise County cropland agriculture
Most croplands in Cochise County in southeastern Arizona are located in the Sulphur Springs Valley in the Willcox Basin. In 2012, major crops included corn, alfalfa, cotton, and pecans (USDA NASS 2014). Referring to the core part of Fig. 2, access to water is one of the most important biophysical variables affecting climate change vulnerability in Cochise. With no surface water, groundwater is the main source for irrigation in the Sulphur Springs Valley and it is depleting. Willcox Basin recharge estimates range from 18.5 to 58 million cubic meters per year, while groundwater discharge from groundwater pumping is estimated at 217 million cubic meters per year (Arizona Department of Water Resources 2014). Depth-to-water (DTW) increased in 549 wells in the Willcox Basin between 1999 and 2005; wells with the most severe DTW increases are located in the primary agricultural area of Sulphur Springs Valley (Jacobson et al. 2008). Even though groundwater is declining, the leading causes of loss of insured crops between 2001 and 2016 were freeze events, followed by excess moisture and hail; failure of irrigation supply was the fourth most widespread cause of loss, impacting 1703 ha between 2001 and 2016. (USDA RMA 2017). Urban expansion is not a significant problem in Cochise. On the contrary, population decreased between 2010 and 2016 by − 4.3% to just over 125,000 people (USDA ERS 2017). However, one source of concern reported in the media is the expansion of pistachio and pecan nut farms in Cochise reportedly driven by farmers moving from southern California to Arizona, ironically in search of more reliable water supplies (Blake 2017).
Unlike Utah County and Doña Ana, information on farmers’ demographics and their contextual vulnerabilities exists for Cochise County through research by Vasquez-Leon et al. (2003) and Vasquez-Leon (2009). Vasquez-Leon’s research offers unique insights into how sociocultural and institutional factors influence risk in different ethnic groups, and her insights are likely applicable in other locations in the southwest. While access to groundwater plays a role in vulnerability to climate change, access to technology and financial resources affect the level of harm that different groups experience through adverse weather and climate events (sensitivity) and how they can respond to these events (adaptive capacity). For example, Anglo farmers invest more in new technology (e.g., center-pivot technology) and crop diversification than Hispanic farmers (Vasquez-Leon et al. 2003), and they own larger farms with land in different areas, thus making their operations less sensitive to the localized weather events that are common in this region (Vasquez-Leon 2009). By comparison, Hispanic farmers own or rent smaller land parcels (affecting eligibility for loans), are less likely to invest in technology, and are also less likely to grow commodity crops that are subsidized under USDA programs (Vasquez-Leon 2009). However, profits from commodity crops are affected by trade policies such as the North American Free Trade Agreement (Coles and Scott 2009). By growing high value vegetable crops for local and regional Mexican and Mexican-American markets, Hispanic farmers can avoid exposure to North American market fluctuations. Overall, Anglo farmers and Hispanic farmers depend on different support networks, which will affect their vulnerability in different ways. Where Anglo farmers may utilize institutional support for loans, market access, or labor recruitment, Hispanic farmers rely on strong social ties (Vasquez-Leon 2009). Through informal social capital, Hispanic farmers have access to loans (from friends and family), markets (via like-minded growers and agents), and farmworkers. In short, they can access economic or human capital with less financial cost than if they were engaged in formal institutional networks.