Chromosome Research

, Volume 22, Issue 3, pp 375–392 | Cite as

Mosaic variegated aneuploidy in mouse BubR1 deficient embryos and pregnancy loss in human

  • Michael Schmid
  • Claus Steinlein
  • Qi Tian
  • Amy E. Hanlon Newell
  • Manfred Gessler
  • Susan B. Olson
  • Andreas Rosenwald
  • Burkhard Kneitz
  • Lev M. Fedorov


Chromosome aberrations (aneuploidies mostly) are the cause of the majority of spontaneous abortions in humans. However, little is known about defects in the underlying molecular mechanisms resulting in chromosome aberrations and following failure of preimplantation embryo development, initiation of implantation and postimplantation pregnancy loss. We suggest that defects of the spindle assembly checkpoint (SAC) are responsible for aneuploidy and the following abortions. To develop our hypothesis, we modeled this process in the mouse after inactivation of protein BubR1, one of the key players of SAC. We found that soon after implantation, more than 50 % of cells of BubR1 −/− embryos were aneuploid and had an increased level of premature sister chromatid separation (PSCS). Aneuploid cells do not have a predominant gain or loss of some specific chromosomes, but they have mosaic variegated aneuploidy (MVA), which is characterised by random mixture of different chromosomes. MVA leads to growth retardation, stochastic massive apoptosis, disruption of bilateral symmetry, and embryo death between embryonic days 7.5 to 13.5. Analysis published human data revealed that human recurrent pregnancy loss (RPL) embryos and rare infant patients carrying BubR1 mutations that have been described so far have the PSCS and MVA as in BubR1 deficient/insufficient mice. Based on this data, we predict that deficiency/insufficiency of BubR1 and other components of the SAC in human are responsible for a significant fraction of both early and late RPLs.


Spindle assembly checkpoint BubR1 deficiency Mosaic variegated aneuploidy Pregnancy loss 



Bub1-related kinase


Fluorescence in situ hybridization


In vitro fertilization


Mouse embryonic fibroblasts


Mosaic variegated aneuploidy


Premature sister chromatid separation


Recurrent pregnancy loss


Spindle assembly checkpoint


Spectral karyotyping



We gratefully acknowledge Winfried Edelmann, for providing advices. We thank Cornelia Leimeister, Barbara Zoeller and Galina Fedorova for expert technical assistance. We acknowledge Pamela Stanley for WW-6 ES cells. We are grateful to David Battaglia, Alexander Derkatch, Daniel Marks and Matt Thayer for critical reading of the manuscript and the helpful discussions. This work was partly supported, by the IZKF of the University of Wuerzburg, Germany and by the Office of the Vice President for Research, Oregon Health & Science University, Portland, OR, USA.

Supplementary material

10577_2014_9432_Fig7_ESM.gif (192 kb)
Fig. S1

Analysis of tumorigenesis in 18 month old BubR1 +/− mice. a,b Bronchioloalveolar lung adenoma in BubR1 +/− mouse. Small (a) and high (b) magnification, respectively. Hematoxylin-eosin staining. Scale bar: 420 μm (a), 60 μm (b). c Tumor incidence in different organs. (GIF 191 kb)

10577_2014_9432_MOESM1_ESM.tif (28 mb)
High resolution (TIFF 28654 kb)
10577_2014_9432_Fig8_ESM.gif (115 kb)
Fig. S2

Karyotyping of BubR1 deficient embryos by G-banding. a, c, e Metaphases of E8.5 BubR1 −/− embryos after G- banding. b, d, f Karyograms of the aneuploid metaphases, 39, XY, -16; 42, XX, +6, +7,-16, +19, and euploid metaphase 40, XY, respectively. (GIF 114 kb)

10577_2014_9432_MOESM2_ESM.tif (3 mb)
High resolution (TIFF 3093 kb)
10577_2014_9432_Fig9_ESM.gif (288 kb)
Fig. S3

Spectral karyotyping (SKY) of BubR1 knockout embryos. Metaphases with chromosome number 39 and 42 from Fig. 6 a-d are presented here in detail. (a-d) SKY of a BubR1 −/− embryo cell metaphase containing 39 chromosomes. a Metaphase after inverted DAPI staining. Y chromosomes are easily identified by their homogeneous dark staining (red arrows). b RGB image after hybridization with SKY-probes. c Pseudocolor image after per-pixel classification of the spectral data. d Karyogram of this metaphase showing RGB imaged (left), inverted DAPI stained (middle) and pseudo-colored chromosomes (right). Karyotyping indicates aneuploidy 39, XYY, -3,-10. (E-H) Spectral karypotyping of a BubR1 −/− embryo metaphase containing 42 chromosomes. e, f, g and h The images were produced as a, b, c, and d respectively. Karyotyping indicates aneuploidy; 42, XY, +8,+16. (GIF 288 kb)

10577_2014_9432_MOESM3_ESM.tif (20.7 mb)
High resolution (TIFF 21229 kb)
10577_2014_9432_MOESM4_ESM.doc (70 kb)
Table S1 (DOC 70 kb)


  1. Angell RR, Aitken RJ, van Look PF et al (1983) Chromosome abnormalities in human embryos after in vitro fertilization. Nature 303:336–338PubMedCrossRefGoogle Scholar
  2. Baker DJ, Jeganathan KB, Cameron JD et al (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749PubMedCrossRefGoogle Scholar
  3. Baranov VS, Dyban AP, Chebotar NA (1980) Preimplantation development of mouse embryos with monosomy of autosome No. 17. Ontogenez 11:148–159PubMedGoogle Scholar
  4. Bishop CE, Boursot PB, Baron F et al (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315:70–72PubMedCrossRefGoogle Scholar
  5. Boue J, Bou A, Lazar P (1975) Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology 12:11–26PubMedCrossRefGoogle Scholar
  6. Bowen P, Lee CS (1969) Spontaneous abortion. Chromosome studies on 41 cases and an analysis of maternal age and duration of pregnancy in relation to karyotype. Am J Obstet Gynecol 104:973–983PubMedGoogle Scholar
  7. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461PubMedCrossRefGoogle Scholar
  8. Burds AA, Lutum AS, Sorger PK (2005) Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A 102:11296–11301PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen CP, Lee CC, Chen WL et al (2004) Prenatal diagnosis of premature centromere division-related mosaic variegated aneuploidy. Prenat Diagn 24:19–25PubMedCrossRefGoogle Scholar
  10. Chin CF, Yeong FM (2010) Safeguarding entry into mitosis: the antephase checkpoint. Mol Cell Biol 30:22–32PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cleveland DW, Mao YK, Sullivan F (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421PubMedCrossRefGoogle Scholar
  12. Coonen E, Harper JC, Ramaekers FC et al (1994) Presence of chromosomal mosaicism in abnormal preimplantation embryos detected by fluorescence in situ hybridisation. Hum Genet 94:609–615PubMedCrossRefGoogle Scholar
  13. Dai W, Wang Q, Liu T et al (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445PubMedCrossRefGoogle Scholar
  14. Daphnis DD, Fragouli E, Economou K et al (2008) Analysis of the evolution of chromosome abnormalities in human embryos from Day 3 to 5 using CGH and FISH. Mol Hum Reprod 14:117–125PubMedCrossRefGoogle Scholar
  15. de Bruin RA, Wittenberg C (2009) All eukaryotes: before turning off G1-S transcription, please check your DNA. Cell Cycle 8:214–217PubMedCrossRefGoogle Scholar
  16. Dobles M, Liberal V, Scott ML et al (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101:635–645PubMedCrossRefGoogle Scholar
  17. Eiben B, Bartels I, Bahr-Porsch S et al (1990) Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet 47:656–663PubMedPubMedCentralGoogle Scholar
  18. Epstein CJ, Travis B (1979) Preimplantation lethality of monosomy for mouse chromosome 19. Nature 280:144–145PubMedCrossRefGoogle Scholar
  19. Evsikov S, Verlinsky Y (1998) Mosaicism in the inner cell mass of human blastocysts. Hum Reprod 13:3151–3155PubMedCrossRefGoogle Scholar
  20. Garcia-Castillo H, Vasquez-Velasquez AI, Rivera H et al (2008) Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A 146A:1687–1695PubMedCrossRefGoogle Scholar
  21. Grande M, Borrell A, Garcia-Posada R et al (2012) The effect of maternal age on chromosomal anomaly rate and spectrum in recurrent miscarriage. Hum Reprod 27:3109–3117PubMedCrossRefGoogle Scholar
  22. Gropp A (1982) Value of an animal model for trisomy. Virchows Arch A Pathol Anat Histol 395:117–131PubMedCrossRefGoogle Scholar
  23. Gropp A, Kolbus U, Giers D (1975) Systematic approach to the study of trisomy in the mouse. II. Cytogenet Cell Genet 14:42–62PubMedCrossRefGoogle Scholar
  24. Guttenbach M, Steinlein C, Engel W et al (2001) Cytogenetic characterization of the TM4 mouse Sertoli cell line. I. Conventional banding techniques, FISH and SKY. Cytogenet Cell Genet 94:71–78PubMedCrossRefGoogle Scholar
  25. Handyside AH, Xu K (2012) Preimplantation genetic diagnosis comes of age. Semin Reprod Med 30:255–258PubMedCrossRefGoogle Scholar
  26. Hanks S, Coleman K, Reid S et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161PubMedCrossRefGoogle Scholar
  27. Harper JC, Coonen E, Handyside AH et al (1995) Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn 15:41–49PubMedCrossRefGoogle Scholar
  28. Hassold T, Chen N, Funkhouser J et al (1980) A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 44:151–178PubMedCrossRefGoogle Scholar
  29. Hodes-Wertz B, Grifo J, Ghadir S et al (2012) Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril 98:675–680PubMedCrossRefGoogle Scholar
  30. Ioffe E, Liu Y, Bhaumik M et al (1995) WW6: an embryonic stem cell line with an inert genetic marker that can be traced in chimeras. Proc Natl Acad Sci U S A 92:7357–7361PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jeganathan K, Malureanu L, Baker DJ et al (2007) Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 179:255–267PubMedCrossRefPubMedCentralGoogle Scholar
  32. Karess RE, Wassmann K, Rahmani Z (2013) New insights into the role of BubR1 in mitosis and beyond. Int Rev Cell Mol Biol 306:223–273PubMedCrossRefGoogle Scholar
  33. Katsumata M, Lo CW (1988) Organization of chromosomes in the mouse nucleus: analysis by in situ hybridization. J Cell Sci 90(Pt 2):193–199PubMedGoogle Scholar
  34. Kneitz B, Cohen PE, Avdievich E et al (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097PubMedPubMedCentralGoogle Scholar
  35. Koot YE, Boomsma CM, Eijkemans MJ et al (2011) Recurrent pre-clinical pregnancy loss is unlikely to be a ‘cause’ of unexplained infertility. Hum Reprod 26:2636–2641PubMedCrossRefGoogle Scholar
  36. Lebedev IN, Ostroverkhova NV, Nikitina TV et al (2004) Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur J Hum Genet 12:513–520PubMedCrossRefGoogle Scholar
  37. Lobrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7:861–869PubMedCrossRefGoogle Scholar
  38. Macklon NS, Geraedts JP, Fauser BC (2002) Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update 8:333–343PubMedCrossRefGoogle Scholar
  39. Mantzouratou A, Delhanty JD (2011) Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res 133:141–148PubMedCrossRefGoogle Scholar
  40. Marquard K, Westphal LM, Milki AA et al (2010) Etiology of recurrent pregnancy loss in women over the age of 35 years. Fertil Steril 94:1473–1477PubMedCrossRefGoogle Scholar
  41. Matsuura S, Matsumoto Y, Morishima K et al (2006) Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A 140:358–367PubMedCrossRefGoogle Scholar
  42. Menasha J, Levy B, Hirschhorn K et al (2005) Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med 7:251–263PubMedCrossRefGoogle Scholar
  43. Mertzanidou A, Wilton L, Cheng J et al (2013) Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod 28:256–264PubMedCrossRefGoogle Scholar
  44. Michel LS, Liberal V, Chatterjee A et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359PubMedCrossRefGoogle Scholar
  45. Munne S, Grifo J, Cohen J et al (1994) Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet 55:150–159PubMedPubMedCentralGoogle Scholar
  46. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393PubMedCrossRefGoogle Scholar
  47. Park I, Lee HO, Choi E et al (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202:295–309PubMedCrossRefPubMedCentralGoogle Scholar
  48. Plaja A, Vendrell T, Smeets D et al (2001) Variegated aneuploidy related to premature centromere division (PCD) is expressed in vivo and is a cancer-prone disease. Am J Med Genet 98:216–223PubMedCrossRefGoogle Scholar
  49. Plaja A, Mediano C, Cano L et al (2003) Prenatal diagnosis of a rare chromosomal instability syndrome: variegated aneuploidy related to premature centromere division (PCD). Am J Med Genet A 117A:85–86PubMedCrossRefGoogle Scholar
  50. Santos MA, Teklenburg G, Macklon NS et al (2010) The fate of the mosaic embryo: chromosomal constitution and development of Day 4, 5 and 8 human embryos. Hum Reprod 25:1916–1926PubMedCrossRefGoogle Scholar
  51. Siegel JJ, Amon A (2012) New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28:189–214PubMedCrossRefPubMedCentralGoogle Scholar
  52. Snape K, Hanks S, Ruark E et al (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43:527–529PubMedCrossRefPubMedCentralGoogle Scholar
  53. Suijkerbuijk SJ, van Dam TJ, Karagöz GE et al (2012) The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 22(6):1321–1329PubMedCrossRefGoogle Scholar
  54. Tian Q, Hanlon Newell AE, Wang Y et al (2011) Complex cytogenetic analysis of early lethality mouse embryos. Chromosome Res 19:567–574PubMedCrossRefGoogle Scholar
  55. van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B et al (2011) Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update 17:620–627PubMedCrossRefGoogle Scholar
  56. Vanneste E, Voet T, Caignec CLE et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583PubMedCrossRefGoogle Scholar
  57. Vleugel M, Hoogendoorn E, Snel B et al (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23:239–250PubMedCrossRefGoogle Scholar
  58. Vorsanova SG, Kolotii AD, Iourov IY et al (2005) Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem Cytochem 53:375–380PubMedCrossRefGoogle Scholar
  59. Wang Q, Liu T, Fang Y et al (2004) BUBR1 deficiency results in abnormal megakaryopoiesis. Blood 103:1278–1285PubMedCrossRefGoogle Scholar
  60. Warburton D, Anyane-Yeboa K, Taterka P et al (1991) Mosaic variegated aneuploidy with microcephaly: a new human mitotic mutant? Ann Genet 34:287–292PubMedGoogle Scholar
  61. White BJ, Tjio JH, Van de Water LC et al (1974) Trisomy 19 in the laboratory mouse. I. Frequency in different crosses at specific developmental stages and relationship of trisomy to cleft palate. Cytogenet Cell Genet 13:217–231PubMedCrossRefGoogle Scholar
  62. Wijshake T, Malureanu LA, Baker DJ et al (2012) Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet 8:e1003138PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael Schmid
    • 1
  • Claus Steinlein
    • 1
  • Qi Tian
    • 2
  • Amy E. Hanlon Newell
    • 3
  • Manfred Gessler
    • 4
  • Susan B. Olson
    • 3
  • Andreas Rosenwald
    • 5
  • Burkhard Kneitz
    • 6
    • 7
  • Lev M. Fedorov
    • 2
    • 6
  1. 1.Department of Human Genetics, BiocenterUniversity of WürzburgWürzburgGermany
  2. 2.Transgenic Mouse model Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandUSA
  3. 3.Cytogenetics Research Laboratory, Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandUSA
  4. 4.Developmental Biochemistry, Theodor-Boveri-Institute, BiocenterUniversity of WürzburgWürzburgGermany
  5. 5.Institute of PathologyUniversity of WürzburgWürzburgGermany
  6. 6.Physiological ChemistryUniversity of WürzburgWürzburgGermany
  7. 7.Department Urology and Pediatric UrologyUniversity of WürzburgWürzburgGermany

Personalised recommendations