Skip to main content
Log in

Following cellulose depolymerization in paper: comparison of size exclusion chromatography techniques

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The study focuses on the comparison of the results obtained by size exclusion chromatography (SEC) detection systems using multiangle laser light scattering (MALLS) and/or ultraviolet–visible (UV/VIS) detectors in analyses of cellulose in paper-based heritage objects. The commonly applied parameter for the evaluation of paper degradation stage and kinetics is weight (M w ) average molar mass measured by SEC. The main problems addressed here are whether the parameters obtained by various techniques and calibration strategies and in various laboratories can be treated universally and what the sources of the discrepancies can be. The SEC-UV/VIS technique proved to give reproducible results as demonstrated by the interlaboratory correlations. Using various data processing methods and SEC techniques it was also shown that molar masses should only be treated relatively. The differences between the kinetic curves based on the M w values obtained from various techniques and processed with various calibration procedures question the reliability of kinetic equations derived using the SEC results to describe the paper degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A 2 :

Second virial coefficient in Rayleigh equation—solvent–solute interactions

α :

Scattering angle

c :

Concentration of a polymer, mg cm−3

D :

Degree of polymerization

(η):

Intrinsic viscosity, cm3 g−1

k :

Rate constant in Ekestam equation, s−1

K :

Optical constant in Rayleigh equation

K, a :

Mark–Houwink-Sekurada (MHS) coefficients in Eq. 1 describing the relation between intrinsic viscosity of a polymer solution (η) and its molar mass M

λ 0 :

Vacuum wavelength of incident beam, nm

M(GCT):

Molar mass of anhydrous glucopyranose triscarbanilate unit, 519 g mol−1

M :

Molar mass of a polymer, g mol−1

M n :

Number average molar mass, g mol−1

M v :

Viscosity average molar mass, g mol−1

M w :

Weight average molar mass, g mol−1

n 0 :

Refractive index of a solvent

N A :

Avogadro’s number

dn/dc :

Refractive index increment

<r 2 >:

Mean square radius of the molecule

P(α):

Form factor in Rayleigh equation—scattered light dependence on angle

R(α):

Excess Rayleigh ratio—the difference between Rayleigh ratio for a solution and a pure solvent

t :

Degradation time, days

t el :

Time of elution, min

V el :

Elution volume, cm3

w :

Fraction of molar mass M of a polymer

References

  • Andersson M, Wittgren B, Wahlund KG (2003) Accuracy in multiangle light scattering measurements for molar mass and radius estimations model calculations and experiments. Anal Chem 75:4279–4291

    Article  CAS  Google Scholar 

  • Barański A, Łagan JM, Łojewski T (2005) Acid-catalysed degradation. In: Strlič M, Kolar J (eds) Aging and stabilisation of paper, University of Ljubljana, Ljubljana, pp 93–110

  • Barański A, Begin P, Łagan JM, Łojewski T, Sawoszczuk T (2006) Application of the Zou Uesaka and Gurnagul model to the degradation of papers of various origins. J Pulp Paper Sci 32:238–244

    Google Scholar 

  • Barkalow DG, Rowell RM, Young RA (1989) A New approach for the production of cellulose acetate: acetylation of mechanical pulp with subsequent isolation of cellulose acetate by differential solubility. J Appl Polym Sci 37:1009–1018

    Article  CAS  Google Scholar 

  • Berek D, Kubin M, Morcinka K, Dressler M (1989) Chromatografia żelowa. PWN, Warszawa

    Google Scholar 

  • Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Kajiwara A, Klumperman B, Russell GT (2000) Critically evaluated rate coefficients for free-radical polymerization. Macromol Chem Phys 201:1355–1364

    Article  CAS  Google Scholar 

  • Daňhelka J, Kössler I (1976) Determination of molecular weight distribution of cellulose by conversion into tricarbanilate and fractionation. J Polym Sci 14:287–298

    Google Scholar 

  • Demeter J, Mormann W, Schmidt J, Burchard W (2003) Solution behaviour of trimethylsilyl cellulose of different degrees of substitution studied by static and dynamic light scattering. Macromolecules 36:5297–5303

    Article  CAS  Google Scholar 

  • Dupont AL (2003a) Cellulose in lithium chloride/NN–dimethylacetamide optimization of a dissolution method using paper substrates and stability of solutions. Polymer 44:4117–4126

    Article  CAS  Google Scholar 

  • Dupont AL (2003b) Gelatine sizing of paper and its impact on the degradation of cellulose during aging—a study using SEC, dissertation, Amsterdam

  • Dupont AL, Mortha G (2004) Comparative evaluation of size exclusion chromatography and viscometry for the characterization of cellulose. J Chromat A 1026:129–141

    Article  CAS  Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanism of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Evans R, Wearne R, Wallis AFA (1989) Molecular weight distribution of cellulose as its tricarbanilate by high performance size exclusion chromatography. J Appl Polym Sci 37:821–827

    Google Scholar 

  • Evans R, Wearne R, Wallis AFA (1991) Pyridine catalyzed depolymerization of cellulose during carbanilation with phenylisocyanate in dimethylsulfoxide. J Appl Polym Sci 42:3291–3303

    Google Scholar 

  • Fellers C, Iversen T. et al (1989) Ageing/degradation of paper, a literature survey, FoU-projectet for Papperkonservering Report 1E. ISSN 0284-5636

  • Girod S, Baldet-Dupy P, Maillols H, Devoisselle JM (2001) On-line direct determination of the second virial coefficient of a natural polysaccharide using size-exclusion chromatography and multi-angle laser light scattering. J Chromat A 943:147–152

    Article  Google Scholar 

  • Grubisic Z, Rempp P, Benoit H (1996) A universal calibration for gel permeation chromatography (Reprinted from Polymer Letters vol 5 pg 753–759 1967). J Polym Sci B Polym Phys 34:1707–1713

    Article  CAS  Google Scholar 

  • Guillaneuf Y, Castignolles P (2008) Using apparent molecular weight from SEC in controlled/living polimerization and kinetics of polymerization. J Polym Sci A 46:897–911

    Article  CAS  Google Scholar 

  • Havermans JBGA (1995) Environmental influences on the deterioration of paper. Meeuwes & Co, Delft, Rotterdam, Barjesteh

    Google Scholar 

  • Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in power transformer part 1 molecular weight study of cellulose insulation paper. Polym Degrad Stab 48:79–87

    Article  CAS  Google Scholar 

  • Hon DN, Shiraishi N (2000) Wood and cellulosic chemistry. Marcel Dekker, New York

    Google Scholar 

  • Jerosch H, Lavédrine B, Cherton C (2001) Study of the stability of cellulose–holocellulose solutions in NN-dimethylacetamide–lithium chloride by size exclusion chromatography. J Chromatogr A 927:31–38

    Article  CAS  Google Scholar 

  • Karlsson O, Westermark U (1996) Evidence for chemical bonds between lignin and cellulose in kraft pulps. J Pulp Paper Sci 22:J397–J401

    Google Scholar 

  • Kato KL, Cameron RE (1999) Structure-property relationships in thermally aged cellulose fibers and paper. Appl Polym Sci 74:1465–1477

    Article  CAS  Google Scholar 

  • Kennedy JF, Rivera ZS, White CA, Lloyd LL, Warner FP (1990) Molecular-weight characterization of underivatized cellulose by GPC using lithium chloride-dimethylacethamide solvent system. Cellulose Chem Technol 24:319–325

    CAS  Google Scholar 

  • Kolar J, Balažic A, Strlič M, Kočar D (2006) Micro-destructive evaluation of paper degradation. Extended abstracts: Belonging to the oral and poster presentations of the final MIP conference [and] 2nd International iron gall ink meeting, 24–27 Jan 2006, Newcastle upon Tyne, UK, 87–89

  • Kostanski LK, Keller DM, Hamielec AE (2004) Size-exclusion chromatography—a review of calibration methodologies. J Biochem Biophys Meth 58:159–186

    Article  CAS  Google Scholar 

  • Lauriol JM, Comtat J, Froment P, Pla F, Robert A (1987a) Molecular weight distribution of cellulose by on-line size exclusion chromatography—low angle laser light scattering; Part II: acid and enzymatic hydrolysis. Holzforschung 41:165–169

    Google Scholar 

  • Lauriol JM, Froment P, Pla F, Robert A (1987b) Molecular weight distribution of cellulose by on-line size exclusion chromatography—low angle laser light scattering; Part I: basic experiments and treatment of data. Holzforschung 41:109–113

    Google Scholar 

  • Łojewska J, Lubańska A, Łojewski T, Miśkowiec P, Proniewicz LM (2005) Kinetic approach to degradation of paper in situ ftir transmission studies on hydrolysis and oxidation. e-Preservation Sci 2:1–12

    Google Scholar 

  • Łojewski T, Miśkowiec T, Missori M, Lubańska A, Proniewicz LM, Łojewska J (2010a) FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations. Carb Polym 82:370–375

    Article  Google Scholar 

  • Łojewski T, Zięba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010b) Evaluating paper degradation progress cross-linking between chromatographic spectroscopic and chemical results. Appl Physics A 100:809–821

    Article  Google Scholar 

  • Łojewski T, Zięba K, Łojewska J (2010c) SEC-MALLS in paper degradation studies. New Mark-Houwink coefficients for cellulose in CED. J Chromat A 1217:6462–6468

    Article  Google Scholar 

  • Malešič J, Kolar J, Strlič M, Kocar D, Fromageot D, Lemaire J, Haillant O (2005) Photo–induced degradation of cellulose. Polym Degrad Stab 89:64–69

    Article  Google Scholar 

  • Marcelo G, Saiz E, Tarazona MP (2007) Determination of molecular parameters of hydroxyethyl and hydroxypropyl celluloses by chromatography with dual detection. J Chromat A 1165:45–51

    Article  CAS  Google Scholar 

  • Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Heidelberg

    Google Scholar 

  • Pffeferkorn P, Beister J, Hild A, Thielking H, Kulicke WM (2003) Determination of the molar mass and the radius of gyration together with their distributions for methylhydroxyethylcelluloses. Cellulose 10:27–36

    Article  Google Scholar 

  • Porsch B, Anderson M, Wittgren B, Wahlund KG (2002) Molecular mass distribution analysis of ethyl(hydroxyethyl) cellulose by size–exclusion chromatography with dual light–scattering and refractometric detection. J Chromat A 964:69–81

    Article  Google Scholar 

  • Ritter A, Schmid M, Affolter S (2010) Determination of molecular weights by size exclusion chromatography (SEC)–Results of round robin tests. Polym Test 29:945–952

    Article  CAS  Google Scholar 

  • SCAN-CM 15:88 (1988) Viscosity in cupri-ethylenediamine solution, standard scandinavian Pulp Paper and Board Testing Committee

  • STEP project CT 90-0100 (1994) The effects of air pollutants on the accelerated ageing of cellulose containing materials—paper. Final project report, TNO Delft

  • Stol R, Pedersoli JL Jr, Poppe H, Kok WT (2002) Application of SEC to the microanalitycal determination of the molecular mass distribution of celluloses from the objects of cultural and historical value. Anal Chem 74:2314–2320

    Article  CAS  Google Scholar 

  • Strlič M, Kolar J (2003) Size exclusion chromatography of cellulose in LiCl/NN–dimethylacetamide–Review. J Biochem Biophys Methods 56:265–279

    Article  Google Scholar 

  • Strlič M, Kolar J, Zigon M, Pihlar B (1998) Evaluation of size exclusion chromatography and viscometry for the determination of molar masses of oxidized cellulose. J Chromat A 805:93–99

    Article  Google Scholar 

  • Strlič M, Kolar J, Kolenc J, Pihlar B (2002) Enthalpic interactions in size exclusion chromatography of pullulan and cellulose in LiCl–N N–dimethylacetamide. J Chromat A 964:47–54

    Article  Google Scholar 

  • Strlič M, Kolar J, Kočar D, Rychlý J (2005a) Thermo-oxidative degradation. In: Strlič M, Kolar J (eds) Aging and stabilisation of paper, University of Ljubljana, Ljubljana, pp 111–132

  • Strlič M, Kolar J, Pihlar B (2005b) Methodology and analytical techniques in paper stability studies. In: Strlič M, Kolar J (eds) Aging and stabilisation of paper, University of Ljubljana, Ljubljana, pp 27–47

  • Strlič M, Kolar J, Scholten S (2005c) Paper and durability. In: Strlič M, Kolar J (eds) Aging and stabilisation of paper, University of Ljubljana, Ljubljana, pp 3–8

  • Sundholm F, Tahvanainen M (2003) Preparation of cellulose samples for size-exclusion chromatography analyses in studies of paper degradation. J Chromat A 108:129–134

    Article  Google Scholar 

  • Zięba K (2009) Size exclusion chromatography as a tool to study paper and cellulose degradation in conservation chemistry, dissertation. Jagiellonian University

Download references

Acknowledgments

The funds from the Project SPB 811/N-COST/2010/0 of the Polish Ministry of Science and Higher Education is kindly acknowledged. The interlaboratory comparison was based on the results obtained during PaperTreat project (No. SSPI-006584) supported by the European Commission under the 6th FP. We gratefully acknowledge Dr. Jana Kolar for kind permission for use in this work the results obtained in National and University Library in Ljubljana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Łojewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łojewski, T., Zięba, K., Kołodziej, A. et al. Following cellulose depolymerization in paper: comparison of size exclusion chromatography techniques. Cellulose 18, 1349–1363 (2011). https://doi.org/10.1007/s10570-011-9562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9562-7

Keywords

Navigation