Skip to main content
Log in

A database of planar axisymmetric periodic orbits for the Solar system

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A multiple grid search strategy is implemented to generate a broad database of axisymmetric three-body periodic orbits for planets and main planetary satellites in the Solar system. The periodic orbit search is performed over 24 pairs of bodies that are well approximated by the circular restricted three-body problem (CR3BP), resulting in approximately 3 million periodic solutions. The periodic orbit generation is implemented in a two-level grid search scheme. First, a global search is applied to each CR3BP system in order to capture the global structure of most existing families, followed by a local grid search, centered around a few fundamental families, where useful, highly sensitive periodic orbits emerge. A robust differential corrector is implemented with a full second-order trust region method in order to efficiently converge the highly sensitive solutions. The periodic orbit database includes solutions that (1) remain in the vicinity of the secondary only; (2) circulate the primary only via inner or outer resonances; and (3) connect both resonance types with orbits bound to the secondary, approximating heteroclinic connections that leads to natural escape/capture mechanisms. The periodic solutions are characterized and presented in detail using a descriptive nomenclature. Initial conditions, stability indices, and other dynamical parameters that allow for the solution characterization are computed and archived. The data and sample scripts are made available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://ssd.jpl.nasa.gov/?phys_data.

  2. For CRTBP systems with small mass ratio, \(\textit{DRO}\)s can be described as continuation of direct two-body orbits in a rotating frame (see Hénon 1969).

  3. The \(\textit{Hb}_1\) and \(\textit{Hb}_2\) families are equivalent to families \(\textit{Hb}\) and \(\textit{Hb}'\) presented in Hénon (2003) and the \(\textit{Hg}\) family is equivalent to Henón’s \(g_3\).

  4. http://russell.ae.utexas.edu/index_files/POdatabase.htm.

  5. https://drive.google.com/drive/u/1/folders/0B7SdUc9xp3V6VTRGbmwzQ1lzSFE.

References

  • Anderson, R.L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 124, 177–199 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Barrabés, B., Gómez, G.: Spatial p–q resonant orbits of the RTBP. Celest. Mech. Dyn. Astron. 84, 387–407 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barrabés, B., Mondelo, J., Ollé, M.: Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Nonlinearity 22, 2901–2918 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barrabés, B., Mondelo, J., Ollé, M.: Numerical continuation of families of heteroclinic connections between periodic orbits in a hamiltonian system. Nonlinearity 26, 274–2765 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transitions associated to weak capture in the restricted three-body problem in the restricted three-body problem. Adv. Space Res. 42, 1330–1351 (2008)

    Article  ADS  Google Scholar 

  • Bradley, N., Russell, R.P.: A continuation method for converting trajectories from patched conics to full gravity models. J. Astronaut. Sci. 61(3), 227–254 (2014)

    Article  Google Scholar 

  • Broucke, R.A.: Periodic orbits in the restricted three-body with Earth–Moon masses. Technical report 32-1168, JPL, Caltech (1968)

  • Broucke, R.A.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Campagnola, S., Skerritt, P., Russell, R.P.: Flybys in the planar, circular, restricted, three-body problem. Celest. Mech. Dyn. Astron. 113, 343–368 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Canalias, E., Masdemont, J.: Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the Sun–Earth and Earth–Moon systems. DCDS 14(2), 261–279 (2006)

    MathSciNet  MATH  Google Scholar 

  • Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods, chap 7. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  • Dichmann, D.J., Doedel, E.J., Paffenroth, R.C.: The computation of periodic solutions of the 3-body problem using the continuation software AUTO. In: International Conference on Libration Points Orbits and Applications, Aiguablava, Spain (2002)

  • Eberle, J., Cuntz, M., Musielak, Z.E.: The instability transition for the restricted 3-body problem. Astron. Astrophys. 489, 1329–1335 (2008)

    Article  ADS  MATH  Google Scholar 

  • Farquahar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)

    Article  ADS  MATH  Google Scholar 

  • Folta, D.C., Bosanac, N., Guzzetti, D., Howell, K.C.: An Earth–Moon system trajectory design reference catalog. Acta Astronaut. 110a, 341–353 (2015)

    Article  ADS  Google Scholar 

  • de la Fuente, Marcos C., de la Fuente, Marcos R.: Asteroid (469219) 2016 \({\text{ HO }}_3\), the smallest and closest Earth quasi-satellite. MNRAS 462, 3441–3456 (2016)

    Article  ADS  Google Scholar 

  • Goudas, C.L.: Three-dimensional periodic orbits and their stability. Icarus 2, 1–18 (1963)

    Article  ADS  MATH  Google Scholar 

  • Guzzetti, D., Bosanac, N., Haapala, A., Howell, K.C., Folta, D.C.: Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronaut. 126, 439–455 (2016)

    Article  ADS  Google Scholar 

  • Haapala, A.F., Howell, K.C.: A framework for constructing transfers linking periodic libration point orbits in the spatial circular restricted three-body problem. Int. J. Bifurc. Chaos 26(5), 1630013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Haapala, A.F., Vaquero, M., Pavlak, T.A., Howell, K.C., Folta, D.C.: Trajectory selection strategy for tours in the Earth–Moon system. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, SC (2013)

  • Hénon, M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. Astron. Astrophys. 1, 223–238 (1969)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem I. Equal masses. Astron. Astrophys. 28, 415–426 (1973)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem II. Hill’s case. Astron. Astrophys. 30, 317–321 (1974)

    ADS  MATH  Google Scholar 

  • Hénon, M.: Generating families in the restricted three-body problem. In: Lecture Notes in Physics, vol. 52. Springer, Berlin (1997)

  • Hénon, M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85(3), 223–246 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Howell, K.C.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32, 53–71 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Howell, K.C., Marchand, B., Lo, M.W.: Temporary satellite capture of short-period jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)

    MathSciNet  Google Scholar 

  • Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Springer, Berlin (1986)

    Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81, 27–38 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kotoulas, T.A., Voyatzis, G.: Three dimensional periodic orbits in exterior mean motion resonances with neptune. Astron. Astrophys. 441, 807–814 (2005)

    Article  ADS  MATH  Google Scholar 

  • Lam, T., Whiffen, G.J.: Exploration of distant retrograde orbits around Europa. In: 15th AAS/AIAA Space Flight Mechanics Conference, Copper Mountain, CO (2005)

  • Lara, M., Pelaez, J.: On the numerical continuation of periodic orbits, an intrinsic, 3-dimensional, differential, predictor–corrector algorithm. Astron. Astrophys. 389, 692–701 (2002)

    Article  ADS  MATH  Google Scholar 

  • Lara, M., Russell, R.P.: On the family g of the restricted three-body problem. Monogr. Real Acad. Cienc. Zaragoza 30, 51–66 (2007)

    MathSciNet  MATH  Google Scholar 

  • Lara, M., Russell, R.P., Villac, B.: Classification of the distant stability regions at Europa. JGCD 30(2), 409–418 (2007)

    ADS  Google Scholar 

  • Lo, M.W., Parker, J.S.: Unstable resonant orbits near Earth and their applications in planetary missions. In: AIAA/AAS Conference, vol. 14, Providence, RI (2004)

  • Lo, M., Williams, B.G., Bollman, W.E., Han, D., Hahn, Y., Bell, J.L., et al.: Genesis mission design. J. Astronaut. Sci. 49(1), 145–167 (2001). https://doi.org/10.2514/6.1998-4468

    Google Scholar 

  • Michalodimitrakis, M.: On the continuation of periodic orbits from the planar to the three-dimensional general three-body problem. Celest. Mech. 19(3), 263–277 (1979). https://doi.org/10.1007/BF01230218

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moons, M., Morbidelli, A.: Secular resonances inside mean-motion commensurabilities: the 4/1, 3/1, 5/2 and 7/3 cases. Icarus 114(1), 33–50 (1995)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Asteroids in retrograde resonance with Jupiter and Saturn. MNRAS 436(1), L30–L34 (2013)

    Article  ADS  Google Scholar 

  • Morbidelli, A.: An overview on the Kuiper belt and on the origin of Jupiter-family comets. Celest. Mech. Dyn. Astron. 72, 129–156 (1999)

    Article  ADS  MATH  Google Scholar 

  • Murray, C., Dermott, S.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Ocampo, C.A., Rosborough, G.W.: Transfer trajectories for distant retrograde orbiters of the Earth. In: Proceedings of the 3rd Annual Spaceflight Mechanics Meeting, vol. 82, No. 2, pp. 1177–1200 (1993)

  • Papadakis, K., Zagouras, C.: Bifurcation points and intersections of families of periodic orbits in the three-dimensional restricted three-body problem. Astrophys. Space Sci. 199, 241–256 (1993)

    Article  ADS  MATH  Google Scholar 

  • Parker, J.S., Davis, K.E., Born, G.H.: Chaining periodic three-body orbits in the Earth–Moon system. Acta Astronaut. 67, 623–638 (2010)

    Article  ADS  Google Scholar 

  • Pellegrini, E., Russell, R.P.: On the acuracy of state transition matrices. J. Guid. Control Dyn. 39(11), 2485–2499 (2016)

    Article  ADS  Google Scholar 

  • Pellegrini, E., Russell, R.P.: A multiple-shooting differential dynamic programming algorithm. In: AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 17-453, San Antonio (2017)

  • Poincare, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. 2. Gauthier-Villars, Paris (1892)

    MATH  Google Scholar 

  • Restrepo, R.L., Russell, R.P.: Patched periodic orbits: a systematic strategy for low-energy transfer design. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 17-695, Stevenson, WA (2017)

  • Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 4, 395–434 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Szebehely, V., Nacozy, P.: A class of e. strömgren’s direct orbits in the restricted problem. AJ 72(2), 184–190 (1967)

    Article  ADS  Google Scholar 

  • Zagouras, C.G.: Three-dimensional periodic orbits about the triangular equilibrium points of the restricted problem of three bodies. Celest. Mech. 37, 27–46 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zagouras, C.G., Markellos, V.V.: Axi-symmetric periodic orbits of the restricted problem in three dimensions. Astron. Astrophys. 59, 79–89 (1977)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Restrepo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Table 3 Representative PO families and set of parameters that allows their identification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo, R.L., Russell, R.P. A database of planar axisymmetric periodic orbits for the Solar system. Celest Mech Dyn Astr 130, 49 (2018). https://doi.org/10.1007/s10569-018-9844-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9844-6

Keywords

Navigation