Variational and symplectic integrators for satellite relative orbit propagation including drag

Original Article
  • 52 Downloads

Abstract

Orbit propagation algorithms for satellite relative motion relying on Runge–Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge–Kutta-based integrators, even in the presence of atmospheric drag.

Keywords

Symplectic integration Variational integration Geometric numerical integration Satellite relative motion Hamiltonian dynamics 

References

  1. Alfriend, K., Vadali, S.R., Gurfil, P., How, J., Breger, L.: Spacecraft Formation Flying: Dynamics, Control, and Navigation. Butterworth-Heinemann, Oxford (2009)Google Scholar
  2. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration, 1st edn. CRC Press, Baco Raton (2016)MATHGoogle Scholar
  3. Blanes, S., Casas, F., Farres, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013).  https://doi.org/10.1016/j.apnum.2013.01.003 MathSciNetCrossRefMATHGoogle Scholar
  4. Engeln-Mulges, G.: Numerical Algorithms with C, 1st edn. Springer, New York (1996)CrossRefGoogle Scholar
  5. Fahnestock, E.G., Lee, T., Leok, M., McClamroch, N.H., Scheeres, D.J.: (2006) Polyhedral potential and variational integrator computation of the full two body problem. In: AIAA/AAS Astrodynamics Specialist Conference.  https://doi.org/10.2514/6.2006-6289, http://arxiv.org/abs/math/0608695
  6. Farres, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116(2), 141–174 (2013).  https://doi.org/10.1007/s10569-013-9479-6 ADSMathSciNetCrossRefMATHGoogle Scholar
  7. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems, 1st edn. (2010).  https://doi.org/10.1007/978-3-642-01777-3, https://books.google.com/books?id=L8wGeoxvuDsC&pgis=1
  8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)MATHGoogle Scholar
  9. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Stormer–Verlet method. Acta Numer. 12(2003), 399–450 (2003).  https://doi.org/10.1017/S0962492902000144, http://www.journals.cambridge.org/abstract_S0962492902000144
  10. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Algorithms for Ordinary Differential Equations, 2nd edn. Springer, New York (2006)MATHGoogle Scholar
  11. Imre, E., Palmer, P.L.: High-precision, symplectic numerical, relative orbit propagation. J. Guid. Control Dyn. 30(4), 965–973 (2007).  https://doi.org/10.2514/1.26846 ADSCrossRefGoogle Scholar
  12. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49(10), 1295–1325 (2000). https://doi.org/10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
  13. Kechichian, J.A.: Motion in general elliptic orbit with respect to a dragging and presessing coordinate frame. J. Astronaut. Sci. 46(1), 25–45 (1998)MathSciNetGoogle Scholar
  14. Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J.E., Schröder, P., et al.: Geometric, variational integrators for computer animation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, vol. 24, pp. 43–51. (2006).  https://doi.org/10.1145/1073204.1073300, http://portal.acm.org/citation.cfm?id=1218064.1218071
  15. Lara, M., Gurfil, P.: Integrable approximation of J2-perturbed relative orbits. Celest. Mech. Dyn. Astronaut. 114(3), 229–254 (2012).  https://doi.org/10.1007/s10569-012-9437-8 ADSCrossRefMATHGoogle Scholar
  16. Lee, D., Springmann, J., Spangelo, S., Cutler, J.: Satellite dynamics simulator development using lie group variational integrator. In: AIAA Modeling and Simulation Technologies Conference, August, pp. 1–20. (2011).  https://doi.org/10.2514/6.2011-6430
  17. Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem in orbital mechanics. Celest. Mech. Dyn. Astron. 98(2), 121–144 (2007).  https://doi.org/10.1007/s10569-007-9073-x ADSMathSciNetCrossRefMATHGoogle Scholar
  18. Lee, T.L.T., McClamroch, N., Leok, M.: A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. In: Proceedings of 2005 IEEE Conference on Control Applications, 2005 CCA, pp. 962–967. (2005).  https://doi.org/10.1109/CCA.2005.1507254
  19. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005).  https://doi.org/10.1017/CBO9780511614118 CrossRefGoogle Scholar
  20. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Numer. Method Eng. 60(1), 153–212 (2004).  https://doi.org/10.1002/nme.958 MathSciNetCrossRefMATHGoogle Scholar
  21. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. (January 2003):1–158. (2001).  https://doi.org/10.1017/S096249290100006X, http://www3.nd.edu/~izaguirr/papers/acta_numerica.pdf
  22. Modin, K., Söderlind, G.: Geometric integration of Hamiltonian systems perturbed by Rayleigh damping. BIT Numer. Math. 51(4), 977–1007 (2011).  https://doi.org/10.1007/s10543-011-0345-1 MathSciNetCrossRefMATHGoogle Scholar
  23. Nordkvist, N., Sanyal, A.K.: A lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics. Proc. IEEE Conf. Decis. Control 3, 5414–5419 (2010).  https://doi.org/10.1109/CDC.2010.5717622 Google Scholar
  24. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. American Institute of Aeronautics and Astronautics Inc, Reston (2009)MATHGoogle Scholar
  25. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100(1), 63–116 (1992).  https://doi.org/10.1016/0045-7825(92)90115-Z ADSMathSciNetCrossRefMATHGoogle Scholar
  26. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)ADSMathSciNetCrossRefGoogle Scholar
  27. Tsuda, Y., Scheeres, D.J.: Computation and applications of an orbital dynamics symplectic state transition matrix. Adv. Astronaut. Sci. 134(4), 899–918 (2009).  https://doi.org/10.2514/1.42358 Google Scholar
  28. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990).  https://doi.org/10.1016/0375-9601(90)90092-3 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Faculty of Aerospace EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations