Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 113, Issue 2, pp 215–234 | Cite as

Characterizing multi-planet systems with classical secular theory

  • Christa Van Laerhoven
  • Richard Greenberg
Original Article

Abstract

Classical secular theory can be a powerful tool to describe the qualitative character of multi-planet systems and offer insight into their histories. The eigenmodes of the secular behavior, rather than current orbital elements, can help identify tidal effects, early planet–planet scattering, and dynamical coupling among the planets, for systems in which mean-motion resonances do not play a role. Although tidal damping can result in aligned major axes after all but one eigenmode have damped away, such alignment may simply be fortuitous. An example of this is 55 Cancri (orbital solution of Fischer et al. in Astophys J 675:790–801, 2008) where multiple eigenmodes remain undamped. Various solutions for 55 Cancri are compared, showing differing dynamical groupings, with implications for the coupling of eccentricities and for the partitioning of damping among the planets. Solutions for orbits that include expectations of past tidal evolution with observational data, must take into account which eigenmodes should be damped, rather than expecting particular eccentricities to be near zero. Classical secular theory is only accurate for low eccentricity values, but comparison with other results suggests that it can yield useful qualitative descriptions of behavior even for moderately large eccentricity values, and may have advantages for revealing underlying physical processes and, as large numbers of new systems are discovered, for triage to identify where more comprehensive dynamical studies should have priority.

Keywords

Planetary systems Planets Dissipative forces Tides Secular theory 55 Cancri planets Mutual perturbations Long-term stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglada-Escude, G., Dawson, R.: Aliases of the first eccentric harmonic: is GJ 581g a genuine planet candidate? Astrophys. J. Lett. submitted, arXiv:1011.0186 (2011)Google Scholar
  2. Barnes R., Greenberg R.: Extrasolar planetary systems near a secular separatrix. Astrophys. J. 638, 478–487 (2006a)ADSCrossRefGoogle Scholar
  3. Barnes R., Greenberg R.: Stability limits in extrasolar systems. Astrophys. J. 647, L163–L166 (2006b)ADSCrossRefGoogle Scholar
  4. Barnes R., Greenberg R.: Behavior of apsidal orientations in planetary systems. Astrophys. J. 652, L53–L56 (2006c)ADSCrossRefGoogle Scholar
  5. Barnes R., Greenberg R.: Apsidal behavior among planetary orbits: testing the planet–planet scattering model. Astrophys. J. 659, L53–L56 (2007)ADSCrossRefGoogle Scholar
  6. Barnes R., Raymond S.N.: Predicting planets in known extrasolar planetary systems I. Test particle simulations. Astrophys. J. 617, 569–574 (2004)ADSCrossRefGoogle Scholar
  7. Barnes R., Quinn T.: The (in)stability of planetary systems. Astrophys. J. 611, 494–516 (2004)ADSCrossRefGoogle Scholar
  8. Batygin K. et al.: Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. Lett. 704, L49–L53 (2009)ADSCrossRefGoogle Scholar
  9. Bonfils X. et al.: The HARPS search for southern extra-solar planets—V1: a Neptune mass planet around the nearby M dwarf Gl 581. Astron. Astrophys. 433, L15–L18 (2005)ADSCrossRefGoogle Scholar
  10. Brouwer D., Clemence G.: Methods of Celestial Mechanics. New York Academic Press, New York (1961)Google Scholar
  11. Chiang E.I., Murray N.: Eccentricity excitation and apsidal resonance capture in the planetary system upsilon Andromedae. Astrophys. J. 576, 473–477 (2002)ADSCrossRefGoogle Scholar
  12. Dawson R., Fabrycky D.: Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)ADSCrossRefGoogle Scholar
  13. Demory, B., et al.: Detection of a transit of super-Earth 55 Cnc e with warm Spitzer. Astron. Astrophys. J. 533, id. A114 (2011)Google Scholar
  14. Fischer D. et al.: Five planets orbiting 55 Cancri. Astophys. J. 675, 790–801 (2008)ADSCrossRefGoogle Scholar
  15. Ford E., Rasio F.: Planet–planet scattering in the upsilon Andromedae system. Nature 434, 873–876 (2005)ADSCrossRefGoogle Scholar
  16. Goldreich P., Soter S.: Q in the solar system. Icarus 5, 375–389 (1966)ADSCrossRefGoogle Scholar
  17. Greenberg, R., Van Laerhoven, C.: Tidal evolution of a secularly interacting planetary system. Astrophys. J. 733, article id. 8 (2011)Google Scholar
  18. Greenberg R., Van Laerhoven C.: Aligned major axes in a planetary system without tidal evolution: the 61 Virginis example. Mon. Not. R. Astron. Soc. 419, 429–435 (2012)ADSCrossRefGoogle Scholar
  19. Greggory P.: Bayesian re-analysis of the Gliese 581 exoplanet system. Mon. Not. R. Astron. Soc. 415, 2523–2545 (2011)ADSCrossRefGoogle Scholar
  20. Jackson B., Barnes R., Greenberg R.: Tidal heating of terrestrial extrasolar planets and implications for their habitability. Mon. Not. R. Astron. Soc. 391, 237–245 (2008)ADSCrossRefGoogle Scholar
  21. Lovis, C., et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, id. A112 (2011)Google Scholar
  22. Malhotra R.: A dynamical mechanism for establishing apsidal resonance. Astrophys. J. 575, L3–L36 (2002)ADSCrossRefGoogle Scholar
  23. Mardling R.A.: Long-term tidal evolution of short period planets with companions. Mon. Not. R. Astron. Soc. 382, 1768–1790 (2007)ADSGoogle Scholar
  24. Mardling R.A.: The determination of planetary structure in tidally relaxed inclined systems. Mon. Not. R. Astron. Soc. 407, 1048–1069 (2010)ADSCrossRefGoogle Scholar
  25. Matsumura S., Peale S.J., Rasio F.A.: Tidal evolution of close-in planets. Astrophys. J. 725, 1995–2016 (2010)ADSCrossRefGoogle Scholar
  26. Michtchenko T.A., Malhotra R.: Secular dynamics of the three-body problem: application to the μ Andromedae planetary system. Icarus 168, 237–248 (2004)ADSCrossRefGoogle Scholar
  27. Murray C., Dermott S.: Solar System Dynamics. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  28. Pepe F. et al.: The HARPS search for southern extra-solar planets—VIII. μ Arae, a system with four planets. Astron. Astrophys. 462, 769–776 (2007)ADSCrossRefGoogle Scholar
  29. Rasio F., Ford E.: Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996)ADSCrossRefGoogle Scholar
  30. Raymond S., Barnes R.: Predicting planets in known extrasolar planetary systems. II. Testing for Saturn mass planets. Astrophys. J. 619, 549–557 (2005)ADSCrossRefGoogle Scholar
  31. Raymond S., Barnes R., Kaib N.: Pridicting planets in known extrasolar planetary systems. III. Forming terrestrial planets. Astrophys. J. 644, 1223–1231 (2006)ADSCrossRefGoogle Scholar
  32. Tuomi, M.: Baysian re-analysis of the radial velocities of Gliese 581. Evidence in favour of only four planetary companions. Astron. Astrophys. 528, id. L5 (2011)Google Scholar
  33. Udry S. et al.: The HARPS search for southern extra-solar planets—XI. Super-Earths (5 and 8 ME) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)ADSCrossRefGoogle Scholar
  34. Vogt S. et al.: A super-Earth and two Neptunes orbiting the nearby sun-like star 61 Virginis. Astrophys. J. 708, 1366–1375 (2010a)ADSCrossRefGoogle Scholar
  35. Vogt S. et al.: The Lick-Carnegie exoplanet survey: a 3.1 ME planet in the habitable zone of the nearby M3V star Gliese 581. Astrophys. J. 723, 954–965 (2010b)ADSCrossRefGoogle Scholar
  36. Winn, J.N., et al.: A super-Earth transiting a naked-eye star. Astrophys. J. Lett. 737, article id. L18 (2011)Google Scholar
  37. Wu Y., Goldreich P.: Tidal evolution of the planetary system around HD 83443. Astrophys. J. 564, 1024–1027 (2002)ADSCrossRefGoogle Scholar
  38. Yoder C.F., Peale S.J.: The tides of Io. Icarus 47, 1–35 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Planetary ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations