Skip to main content
Log in

Characterizing multi-planet systems with classical secular theory

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Classical secular theory can be a powerful tool to describe the qualitative character of multi-planet systems and offer insight into their histories. The eigenmodes of the secular behavior, rather than current orbital elements, can help identify tidal effects, early planet–planet scattering, and dynamical coupling among the planets, for systems in which mean-motion resonances do not play a role. Although tidal damping can result in aligned major axes after all but one eigenmode have damped away, such alignment may simply be fortuitous. An example of this is 55 Cancri (orbital solution of Fischer et al. in Astophys J 675:790–801, 2008) where multiple eigenmodes remain undamped. Various solutions for 55 Cancri are compared, showing differing dynamical groupings, with implications for the coupling of eccentricities and for the partitioning of damping among the planets. Solutions for orbits that include expectations of past tidal evolution with observational data, must take into account which eigenmodes should be damped, rather than expecting particular eccentricities to be near zero. Classical secular theory is only accurate for low eccentricity values, but comparison with other results suggests that it can yield useful qualitative descriptions of behavior even for moderately large eccentricity values, and may have advantages for revealing underlying physical processes and, as large numbers of new systems are discovered, for triage to identify where more comprehensive dynamical studies should have priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anglada-Escude, G., Dawson, R.: Aliases of the first eccentric harmonic: is GJ 581g a genuine planet candidate? Astrophys. J. Lett. submitted, arXiv:1011.0186 (2011)

    Google Scholar 

  • Barnes R., Greenberg R.: Extrasolar planetary systems near a secular separatrix. Astrophys. J. 638, 478–487 (2006a)

    Article  ADS  Google Scholar 

  • Barnes R., Greenberg R.: Stability limits in extrasolar systems. Astrophys. J. 647, L163–L166 (2006b)

    Article  ADS  Google Scholar 

  • Barnes R., Greenberg R.: Behavior of apsidal orientations in planetary systems. Astrophys. J. 652, L53–L56 (2006c)

    Article  ADS  Google Scholar 

  • Barnes R., Greenberg R.: Apsidal behavior among planetary orbits: testing the planet–planet scattering model. Astrophys. J. 659, L53–L56 (2007)

    Article  ADS  Google Scholar 

  • Barnes R., Raymond S.N.: Predicting planets in known extrasolar planetary systems I. Test particle simulations. Astrophys. J. 617, 569–574 (2004)

    Article  ADS  Google Scholar 

  • Barnes R., Quinn T.: The (in)stability of planetary systems. Astrophys. J. 611, 494–516 (2004)

    Article  ADS  Google Scholar 

  • Batygin K. et al.: Determination of the interior structure of transiting planets in multiple-planet systems. Astrophys. J. Lett. 704, L49–L53 (2009)

    Article  ADS  Google Scholar 

  • Bonfils X. et al.: The HARPS search for southern extra-solar planets—V1: a Neptune mass planet around the nearby M dwarf Gl 581. Astron. Astrophys. 433, L15–L18 (2005)

    Article  ADS  Google Scholar 

  • Brouwer D., Clemence G.: Methods of Celestial Mechanics. New York Academic Press, New York (1961)

    Google Scholar 

  • Chiang E.I., Murray N.: Eccentricity excitation and apsidal resonance capture in the planetary system upsilon Andromedae. Astrophys. J. 576, 473–477 (2002)

    Article  ADS  Google Scholar 

  • Dawson R., Fabrycky D.: Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010)

    Article  ADS  Google Scholar 

  • Demory, B., et al.: Detection of a transit of super-Earth 55 Cnc e with warm Spitzer. Astron. Astrophys. J. 533, id. A114 (2011)

    Google Scholar 

  • Fischer D. et al.: Five planets orbiting 55 Cancri. Astophys. J. 675, 790–801 (2008)

    Article  ADS  Google Scholar 

  • Ford E., Rasio F.: Planet–planet scattering in the upsilon Andromedae system. Nature 434, 873–876 (2005)

    Article  ADS  Google Scholar 

  • Goldreich P., Soter S.: Q in the solar system. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  • Greenberg, R., Van Laerhoven, C.: Tidal evolution of a secularly interacting planetary system. Astrophys. J. 733, article id. 8 (2011)

    Google Scholar 

  • Greenberg R., Van Laerhoven C.: Aligned major axes in a planetary system without tidal evolution: the 61 Virginis example. Mon. Not. R. Astron. Soc. 419, 429–435 (2012)

    Article  ADS  Google Scholar 

  • Greggory P.: Bayesian re-analysis of the Gliese 581 exoplanet system. Mon. Not. R. Astron. Soc. 415, 2523–2545 (2011)

    Article  ADS  Google Scholar 

  • Jackson B., Barnes R., Greenberg R.: Tidal heating of terrestrial extrasolar planets and implications for their habitability. Mon. Not. R. Astron. Soc. 391, 237–245 (2008)

    Article  ADS  Google Scholar 

  • Lovis, C., et al.: The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, id. A112 (2011)

    Google Scholar 

  • Malhotra R.: A dynamical mechanism for establishing apsidal resonance. Astrophys. J. 575, L3–L36 (2002)

    Article  ADS  Google Scholar 

  • Mardling R.A.: Long-term tidal evolution of short period planets with companions. Mon. Not. R. Astron. Soc. 382, 1768–1790 (2007)

    ADS  Google Scholar 

  • Mardling R.A.: The determination of planetary structure in tidally relaxed inclined systems. Mon. Not. R. Astron. Soc. 407, 1048–1069 (2010)

    Article  ADS  Google Scholar 

  • Matsumura S., Peale S.J., Rasio F.A.: Tidal evolution of close-in planets. Astrophys. J. 725, 1995–2016 (2010)

    Article  ADS  Google Scholar 

  • Michtchenko T.A., Malhotra R.: Secular dynamics of the three-body problem: application to the μ Andromedae planetary system. Icarus 168, 237–248 (2004)

    Article  ADS  Google Scholar 

  • Murray C., Dermott S.: Solar System Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Pepe F. et al.: The HARPS search for southern extra-solar planets—VIII. μ Arae, a system with four planets. Astron. Astrophys. 462, 769–776 (2007)

    Article  ADS  Google Scholar 

  • Rasio F., Ford E.: Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996)

    Article  ADS  Google Scholar 

  • Raymond S., Barnes R.: Predicting planets in known extrasolar planetary systems. II. Testing for Saturn mass planets. Astrophys. J. 619, 549–557 (2005)

    Article  ADS  Google Scholar 

  • Raymond S., Barnes R., Kaib N.: Pridicting planets in known extrasolar planetary systems. III. Forming terrestrial planets. Astrophys. J. 644, 1223–1231 (2006)

    Article  ADS  Google Scholar 

  • Tuomi, M.: Baysian re-analysis of the radial velocities of Gliese 581. Evidence in favour of only four planetary companions. Astron. Astrophys. 528, id. L5 (2011)

    Google Scholar 

  • Udry S. et al.: The HARPS search for southern extra-solar planets—XI. Super-Earths (5 and 8 ME) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007)

    Article  ADS  Google Scholar 

  • Vogt S. et al.: A super-Earth and two Neptunes orbiting the nearby sun-like star 61 Virginis. Astrophys. J. 708, 1366–1375 (2010a)

    Article  ADS  Google Scholar 

  • Vogt S. et al.: The Lick-Carnegie exoplanet survey: a 3.1 ME planet in the habitable zone of the nearby M3V star Gliese 581. Astrophys. J. 723, 954–965 (2010b)

    Article  ADS  Google Scholar 

  • Winn, J.N., et al.: A super-Earth transiting a naked-eye star. Astrophys. J. Lett. 737, article id. L18 (2011)

  • Wu Y., Goldreich P.: Tidal evolution of the planetary system around HD 83443. Astrophys. J. 564, 1024–1027 (2002)

    Article  ADS  Google Scholar 

  • Yoder C.F., Peale S.J.: The tides of Io. Icarus 47, 1–35 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Van Laerhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laerhoven, C., Greenberg, R. Characterizing multi-planet systems with classical secular theory. Celest Mech Dyn Astr 113, 215–234 (2012). https://doi.org/10.1007/s10569-012-9410-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9410-6

Keywords

Navigation