Celestial Mechanics and Dynamical Astronomy

, Volume 110, Issue 2, pp 99–142 | Cite as

Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth

Original Article


We explore the evolution of the angular velocity of an elastic Earth model, within the Hamiltonian formalism. The evolution of the rotation state of the Earth is caused by the tidal deformation exerted by the Moon and the Sun. It can be demonstrated that the tidal perturbation to spin depends not only upon the instantaneous orientation of the Earth, but also upon its instantaneous angular velocity. Parameterizing the orientation of the Earth figure axis with the three Euler angles, and introducing the canonical momenta conjugated to these, one can then show that the tidal perturbation depends both upon the angles and the momenta. This circumstance complicates the integration of the rotational motion. Specifically, when the integration is carried out in terms of the canonical Andoyer variables (which are the rotational analogues to the orbital Delaunay variables), one should keep in mind the following subtlety: under the said kind of perturbations, the functional dependence of the angular velocity upon the Andoyer elements differs from the unperturbed dependence (Efroimsky in Proceedings of Journées 2004: Systèmes de référence spatio-temporels. l’Observatoire de Paris, pp 74–81, 2005; Efroimsky and Escapa in Celest. Mech. Dyn. Astron. 98:251–283, 2007). This happens because, under angular velocity dependent perturbations, the requirement for the Andoyer elements to be canonical comes into a contradiction with the requirement for these elements to be osculating, a situation that parallels a similar antinomy in orbital dynamics. Under the said perturbations, the expression for the angular velocity acquires an additional contribution, the so called convective term. Hence, the time variation induced on the angular velocity by the tidal deformation contains two parts. The first one comes from the direct terms, caused by the action of the elastic perturbation on the torque-free expressions of the angular velocity. The second one arises from the convective terms. We compute the variations of the angular velocity through the approach developed in Getino and Ferrándiz (Celest. Mech. Dyn. Astron. 61:117–180, 1995), but considering the contribution of the convective terms. Specifically, we derive analytical formulas that determine the elastic perturbations of the directional angles of the angular velocity with respect to a non-rotating reference system, and also of its Cartesian components relative to the Tisserand reference system of the Earth. The perturbation of the directional angles of the angular velocity turns out to be different from the evolution law found in Kubo (Celest. Mech. Dyn. Astron. 105:261–274, 2009), where it was stated that the evolution of the angular velocity vector mimics that of the figure axis. We investigate comprehensively the source of this discrepancy, concluding that the difference between our results and those obtained in Ibid. stems from an oversimplification made by Kubo when computing the direct terms. Namely, in his computations Kubo disregarded the motion of the tide raising bodies with respect to a non-rotating reference system when compared with the Earth rotational motion. We demonstrate that, from a numerical perspective, the convective part provides the principal contribution to the variation of the directional angles and of length of day. In the case of the x and y components in the Tisserand system, the convective contribution is of the same order of magnitude as the direct one. Finally, we show that the approximation employed in Kubo (Ibid.) leads to significant numerical differences at the level of a hundred micro-arcsecond.


Rotation of Celestial bodies Elastic Earth rotation Andoyer variables Attitude dynamics Non-osculation Canonical perturbation theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andoyer H.: Cours de Mécanique Céleste, vol. 1. Gauthier-Villars, Paris (1923)Google Scholar
  2. Capitaine, N.: Definition and realization of the celestial intermediate reference system. In: Jin, W., Platais, I., Perryman, M.A.C. (Eds.) A Giant Step: From Milli to Micro-arcsecond Astrometry. Proceedings of the International Astronomical Union, IAU Symposium, vol. 248, pp. 367–373 (2008)Google Scholar
  3. Celletti A., Sidorenko V.: Some properties of the dumbbell satellite attitude dynamics. Celest. Mech. Dyn. Astron. 101, 105–126 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  4. Celletti A., Voyatzis G.: Regions of stability in rotational dynamics. Celest. Mech. Dyn. Astron. 107, 101–113 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  5. Cottereau L., Souchay J.: Rotation of rigid Venus: a complete precession-nutation model. Astron. Astrophys. 507, 1635–1648 (2009)ADSMATHCrossRefGoogle Scholar
  6. Dehant V., Arias F., Bizouard Ch., Bretagnon P., Brzezinski A., Buffett B., Capitaine N., Defraigne P., de Viron O., Feissel M., Fliegel H., Forte A., Gambis D., Getino J., Gross. R., Herring T., Kinoshita H., Klioner S., Mathews P.M., McCarthy D., Moisson X., Petrov S., Ponte R.M., Roosbeek F., Salstein D., Schuh H., Seidelmann K., Soffel M., Souchay J., Vondrak J., Wahr J.M., Weber R., Williams J., Yatskiv Y., Zharov V., Zhu S.Y.: Considerations concerning the non-rigid Earth nutation theory. Celest. Mech. Dyn. Astron. 72, 245–310 (1999)ADSCrossRefGoogle Scholar
  7. D’Hoedt S., Noyelles B., Dufey J., Lemaître A.: A secondary resonance in Mercury’s rotation. Celest. Mech. Dyn. Astron. 107, 93–100 (2010)ADSMATHCrossRefGoogle Scholar
  8. Efroimsky, M.: On the theory of canonical perturbations and its application to Earth rotation. In: Capitaine, N. (Ed.) Proceedings of Journées 2004: Systèmes de référence spatio-temporels. l’Observatoire de Paris, pp. 74–81 (2005)Google Scholar
  9. Efroimsky M.: Gauge freedom in orbital mechanics. Ann. N Y Acad. Sci. 1065, 346–374 (2006)ADSCrossRefGoogle Scholar
  10. Efroimsky M., Escapa A.: The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables. Celest. Mech. Dyn. Astron. 98, 251–283 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  11. Efroimsky M., Goldreich P.: Gauge symmetry of the N-body problem in the Hamilton-Jacobi approach. J. Math. Phys. 44, 5958–5977 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  12. Efroimsky M., Goldreich P.: Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415, 1187–1199 (2004)ADSMATHCrossRefGoogle Scholar
  13. Escapa A., Getino J.: Complementary developments in the Hamiltonian theory of the non-rigid Earth. Int. J. Appl. Sci. Comp. 7, 142–147 (2000)Google Scholar
  14. Escapa A., Getino J., Ferrándiz J.M.: Canonical approach to the free nutations of a three-layer Earth model. J. Geophys. Res. 106, 11387–11397 (2001)ADSCrossRefGoogle Scholar
  15. Escapa A., Getino J., Ferrándiz J.M.: Indirect effect of the triaxiality in the Hamiltonian theory for the rigid Earth nutations. Astron. Astrophys. 389, 1047–1054 (2002)ADSCrossRefGoogle Scholar
  16. Ferrándiz J.M., Getino J.: On the tidal variation of geopotential. Celest. Mech. Dyn. Astron. 57, 279–292 (1993)ADSCrossRefGoogle Scholar
  17. Ferrándiz J.M., Navarro J.F., Escapa A., Getino J.: Precession of the nonrigid earth: effect of the fluid outer core. Astron. J. 128, 1407–1411 (2004)ADSCrossRefGoogle Scholar
  18. Ferraz-Mello S.: Canonical Perturbation Theories: Degenerate Systems and Resonance. Springer, New York (2007)MATHGoogle Scholar
  19. Fukushima T.: Canonical and universal elements of the rotational motion of a triaxial rigid body. Astron J. 136, 1728–1735 (2008)ADSCrossRefGoogle Scholar
  20. Getino J.: Forced nutations of a rigid mantle-liquid core earth model in canonical formulation. Geophys. J. Int. 122, 803–814 (1995)ADSCrossRefGoogle Scholar
  21. Getino J., Ferrándiz J.M.: A Hamiltonian theory for an elastic earth—Canonical variables and kinetic energy. Celest. Mech. Dyn. Astron. 49, 303–326 (1990)ADSMATHCrossRefGoogle Scholar
  22. Getino J., Ferrándiz J.M.: On the effect of the mantle elasticity on the Earth’s rotation. Celest. Mech. Dyn. Astron. 61, 117–180 (1995)ADSCrossRefGoogle Scholar
  23. Getino J., Ferrándiz J.M.: Forced nutations of a two layer Earth model. Mon. Not. R. Astron. Soc. 322, 785–799 (2001)ADSCrossRefGoogle Scholar
  24. Getino J., González A.B., Escapa A.: The rotation of a non-rigid, non-symmetrical earth II: free nutations and dissipative effects. Celest. Mech. Dyn. Astron. 76, 1–21 (2000)ADSMATHCrossRefGoogle Scholar
  25. Getino J., Ferrándiz J.M., Escapa A.: Hamiltonian theory for the non-rigid earth: semidiurnal terms. Astron. Astrophys. 370, 330–341 (2001)ADSCrossRefGoogle Scholar
  26. Getino J., Escapa A., Miguel D.: General theory of the rotation of the non-rigid Earth at the second order. I. The rigid model in Andoyer variables. Astron. J. 139, 1916–1934 (2010)ADSCrossRefGoogle Scholar
  27. Gurfil P., Elipe A., Tangren T., Efroimsky E.: The Serret–Andoyer formalism in rigid-body dynamics: I. Symmetries and perturbations. Regul. Chaot. Dyn. 12, 389–425 (2007)MathSciNetADSCrossRefMATHGoogle Scholar
  28. Henrard J.: The rotation of Europa. Celest. Mech. Dyn. Astron. 91, 131–149 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  29. Hori G.I.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)ADSGoogle Scholar
  30. Hori, G.I.: Theory of General Perturbations. In: Tapley, B.D., Szebehely, V. (Eds.) Recent Advances in Dynamical Astronomy. Astrophysics and Space Science Library 39, pp. 231–249 (1973)Google Scholar
  31. IERS Conventions 2003, IERS Technical Note 32. In: McCarthy, D.D. & Petit, G. (Eds.) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie (2003)Google Scholar
  32. Jeffreys H.: The Earth. Cambridge University Press, Cambridge (1976)Google Scholar
  33. Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space Phys. 2, 661–685 (1964)ADSCrossRefGoogle Scholar
  34. Kinoshita H.: First-order perturbations of the two finite-body problem. Pub. Astron. Soc. Jpn. 24, 423–457 (1972)MathSciNetADSGoogle Scholar
  35. Kinoshita H.: Theory of the rotation of the rigid Earth. Celest. Mech. Dyn. Astron. 15, 277–326 (1977)MathSciNetGoogle Scholar
  36. Kinoshita, H., Sasao, T.: Theoretical aspects of the Earth rotation. In: Kovalesky, J. et al. (Eds.) Reference Frames in Astronomy and Geophysics. Astrophysics and Space Science Library 154, pp. 173–211 (1989)Google Scholar
  37. Kinoshita H., Souchay J.: The theory of the nutation for the rigid Earth model at the second order. Celest. Mech. Dyn. Astron. 48, 187–265 (1990)ADSMATHCrossRefGoogle Scholar
  38. Kinoshita H., Nakajima K., Kubo Y., Nakagawa I., Sasao T., Yokoyama K.: Note on nutation in ephemerides. Public Int. Latitude Observat. Mizusawa XII(1), 71–108 (1978)Google Scholar
  39. Kopeikin S.M., Pavlis E., Pavlis D., Brumberg V.A., Escapa A., Getino J., Gusev A., Mueller J., Ni W.T., Petrova N.: Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging. Adv. Space Res. 42, 1378–1390 (2008)ADSCrossRefGoogle Scholar
  40. Kubo Y.: Solution to the rotation of the elastic Earth by method of rigid dynamics. Celest. Mech. Dyn. Astron. 50, 165–187 (1991)ADSMATHCrossRefGoogle Scholar
  41. Kubo Y.: Rotation of the elastic earth: the role of the angular-velocity-dependence of the elasticity-caused perturbation. Celest. Mech. Dyn. Astron. 105, 261–274 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  42. Moritz H., Mueller I.: Earth Rotation. Frederic Ungar, New York (1986)Google Scholar
  43. Munk W.K., MacDonald G.J.F.: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge (1960)Google Scholar
  44. Noyelles B.: Titan’s rotational state. The effects of a forced “free” resonant wobble. Celest. Mech. Dyn. Astron. 101, 13–30 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  45. Routh E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 6th ed., rev. and enl. Dover Publications, New York (1955)Google Scholar
  46. Schreiber, K.U., Velikoseltsev, A., Rothacher, M., Klügel, T., Stedman, G.E.: Direct measurement of diurnal polar motion by ring laser gyroscopes. J. Geophys. Res. (2004). doi: 10.1029/2003JB002803
  47. Souchay J., Losley B., Kinoshita H., Folgueira M.: Corrections and new developments in rigid earth nutation theory. III. Final tables “REN-2000” including crossed-nutation and spin-orbit coupling effects. Astron. Astrophys. Suppl. Ser. 135, 111–131 (1999)ADSCrossRefGoogle Scholar
  48. Touma J., Wisdom J.: Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994)ADSCrossRefGoogle Scholar
  49. Touma J., Wisdom J.: Nonlinear core-mantle coupling. Astron. J. 122, 1030–1050 (2001)ADSCrossRefGoogle Scholar
  50. Vilhena de Moraes R., Cabette R.E.S., Zanardi M.C., Stuchi T.J., Formiga J.K.: Attitude stability of artificial satellites subject to gravity gradient torque. Celest. Mech. Dyn. Astron. 104, 337–353 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  51. Wahr J.M., Sasao T., Smith M.: Effect of the fluid core on changes in the length of day due to long period tides. Geophys. J. Int. 64, 635–650 (1981)ADSCrossRefGoogle Scholar
  52. Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Astronomical ObservatoryTokyoJapan
  2. 2.Department of Applied MathematicsUniversity of AlicanteAlicanteSpain

Personalised recommendations