Skip to main content

Advertisement

Log in

Racial variation in umbilical cord blood sex steroid hormones and the insulin-like growth factor axis in African-American and white female neonates

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether there is racial variation in venous umbilical cord blood concentrations of sex steroid hormones and the insulin-like growth factor (IGF) axis between female African-American and white neonates.

Methods

Maternal and birth characteristics and venous umbilical cord blood samples were collected from 77 African-American and 41 white full-term uncomplicated births at two urban hospitals in 2004 and 2005. Cord blood was measured for testosterone, dehydroespiandrosterone-sulfate, estradiol, and sex steroid hormone-binding globulin (SHBG) by immunoassay. IGF-1, IGF-2, and IGF-binding protein-3 (IGFBP-3) were measured by ELISA. Crude and multivariable-adjusted geometric mean concentrations were computed for the hormones.

Results

African-American neonates weighed less at birth (3,228 g vs. 3,424 g, p < 0.004) than whites. Birth weight was positively correlated with IGF-1, IGFBP-3, and the molar ratio of IGF-1 to IGFBP-3, but inversely correlated with the molar ratio of IGF-2 to IGFBP-3. Adjusted models showed higher testosterone (1.82 ng/ml vs. 1.47 ng/ml, p = 0.006) and the molar ratio of testosterone to SHBG (0.42 vs. 0.30, p = 0.03) in African-American compared to white female neonates. IGF-1, IGF-2, and IGFBP-3 were lower in African-American compared to white female neonates, but only the difference for IGF-2 remained significant (496.5 ng/ml vs. 539.2 ng/ml, p = 0.04).

Conclusion

We provide evidence of racial variation in cord blood testosterone and testosterone to SHBG in African-American compared to white female neonates, and higher IGF-2 in white compared to African-American female neonates. Findings suggest plausible explanations for a prenatal influence on subsequent breast cancer risk and mortality. Further work is needed to confirm these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson WF, Rosenberg PS, Menashe I, Mitani A, Pfeiffer RM (2008) Age-related crossover in breast cancer incidence rates between black and white ethnic groups. J Natl Cancer Inst 100:1804–1814

    Article  PubMed  Google Scholar 

  2. Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100:1643–1648

    Article  PubMed  Google Scholar 

  3. McBride R, Hershman D, Tsai WY, Jacobson JS, Grann V, Neugut AI (2007) Within-stage racial differences in tumor size and number of positive lymph nodes in women with breast cancer. Cancer 110:1201–1208

    Article  PubMed  Google Scholar 

  4. Morris GJ, Mitchell EP (2008) Higher incidence of aggressive breast cancers in African-American women: a review. J Natl Med Assoc 100:698–702

    PubMed  Google Scholar 

  5. Baglietto L, Severi G, English DR et al (2010) Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer Epidemiol Biomarkers Prev 19:492–502

    Article  PubMed  CAS  Google Scholar 

  6. Eliassen AH, Missmer SA, Tworoger SS et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98:1406–1415

    Article  PubMed  CAS  Google Scholar 

  7. Potischman N, Troisi R, Thadhani R et al (2005) Pregnancy hormone concentrations across ethnic groups: implications for later cancer risk. Cancer Epidemiol Biomarkers Prev 14:1514–1520

    Article  PubMed  CAS  Google Scholar 

  8. Pacher M, Seewald MJ, Mikula M et al (2007) Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis 28:49–59

    Article  PubMed  CAS  Google Scholar 

  9. Yu H, Shu XO, Li BD et al (2003) Joint effect of insulin-like growth factors and sex steroids on breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:1067–1073

    PubMed  CAS  Google Scholar 

  10. McCormack VA, Dowsett M, Folkerd E et al (2009) Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women. Breast Cancer Res 11:R38

    Article  PubMed  Google Scholar 

  11. Pinheiro SP, Holmes MD, Pollak MN, Barbieri RL, Hankinson SE (2005) Racial differences in premenopausal endogenous hormones. Cancer Epidemiol Biomarkers Prev 14:2147–2153

    Article  PubMed  CAS  Google Scholar 

  12. Setiawan VW, Cheng I, Stram DO et al (2006) Igf-I genetic variation and breast cancer: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev 15:172–174

    Article  PubMed  CAS  Google Scholar 

  13. Casazza K, Higgins PB, Fernandez JR, Goran MI, Gower BA (2008) Longitudinal analysis of the insulin-like growth factor system in African-American and European American children and adolescents. J Clin Endocrinol Metab 93:4917–4923

    Article  PubMed  CAS  Google Scholar 

  14. Girgis R, Abrams SA, Castracane VD, Gunn SK, Ellis KJ, Copeland KC (2000) Ethnic differences in androgens, IGF-I and body fat in healthy prepubertal girls. J Pediatr Endocrinol Metab 13:497–503

    Article  PubMed  CAS  Google Scholar 

  15. Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940

    Article  PubMed  CAS  Google Scholar 

  16. Park SK, Kang D, McGlynn KA et al (2008) Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res 10:R8

    Article  PubMed  Google Scholar 

  17. Xu X, Dailey AB, Peoples-Sheps M, Talbott EO, Li N, Roth J (2009) Birth weight as a risk factor for breast cancer: a meta-analysis of 18 epidemiological studies. J Womens Health (Larchmt) 18:1169–1178

    Article  Google Scholar 

  18. Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100

    Article  PubMed  Google Scholar 

  19. Oberg S, Cnattingius S, Sandin S, Lichtenstein P, Iliadou A (2009) Birth weight-breast cancer revisited: is the association confounded by familial factors? Cancer Epidemiol Biomarkers Prev 18:2447–2452

    Article  PubMed  Google Scholar 

  20. Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D (2003) Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14:311–318

    Article  PubMed  Google Scholar 

  21. Shibata A, Harris DT, Billings PR (2002) Concentrations of estrogens and IGFs in umbilical cord blood plasma: a comparison among Caucasian, Hispanic, and Asian-American females. J Clin Endocrinol Metab 87:810–815

    Article  PubMed  CAS  Google Scholar 

  22. Troisi R, Lagiou P, Trichopoulos D et al (2008) Cord serum estrogens, androgens, insulin-like growth factor-I, and insulin-like growth factor binding protein-3 in Chinese and US Caucasian neonates. Cancer Epidemiol Biomarkers Prev 17:224–231

    Article  PubMed  CAS  Google Scholar 

  23. Vatten LJ, Odegard RA, Nilsen ST, Salvesen KA, Austgulen R (2002) Relationship of insulin-like growth factor-I and insulin-like growth factor binding proteins in umbilical cord plasma to preeclampsia and infant birth weight. Obstet Gynecol 99:85–90

    Article  PubMed  CAS  Google Scholar 

  24. Simmons D (1995) Interrelation between umbilical cord serum sex hormones, sex hormone-binding globulin, insulin-like growth factor I, and insulin in neonates from normal pregnancies and pregnancies complicated by diabetes. J Clin Endocrinol Metab 80:2217–2221

    Article  PubMed  CAS  Google Scholar 

  25. Troisi R, Potischman N, Roberts J et al (2003) Associations of maternal and umbilical cord hormone concentrations with maternal, gestational and neonatal factors (United States). Cancer Causes Control 14:347–355

    Article  PubMed  Google Scholar 

  26. Lagiou P, Samoli E, Okulicz W et al (2011) Maternal and cord blood hormone levels in the United States and China and the intrauterine origin of breast cancer. Ann Oncol 22:1102–1108

    Article  PubMed  CAS  Google Scholar 

  27. Savarese TM, Strohsnitter WC, Low HP et al (2007) Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res 9:R29

    Article  PubMed  Google Scholar 

  28. Nagata C, Iwasa S, Shiraki M, Shimizu H (2006) Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomarkers Prev 15:1469–1472

    Article  PubMed  CAS  Google Scholar 

  29. Henderson BE, Bernstein L, Ross RK, Depue RH, Judd HL (1988) The early in utero oestrogen and testosterone environment of blacks and whites: potential effects on male offspring. Br J Cancer 57:216–218

    Article  PubMed  CAS  Google Scholar 

  30. Carlsen SM, Jacobsen G, Romundstad P (2006) Maternal testosterone levels during pregnancy are associated with offspring size at birth. Eur J Endocrinol 155:365–370

    Article  PubMed  CAS  Google Scholar 

  31. Manikkam M, Crespi EJ, Doop DD et al (2004) Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 145:790–798

    Article  PubMed  CAS  Google Scholar 

  32. Whitehouse AJ, Maybery MT, Hart R et al (2010) Free testosterone levels in umbilical-cord blood predict infant head circumference in females. Dev Med Child Neurol 52:e73–e77

    Article  PubMed  Google Scholar 

  33. Simmons D, France JT, Keelan JA, Song L, Knox BS (1994) Sex differences in umbilical cord serum levels of inhibin, testosterone, oestradiol, dehydroepiandrosterone sulphate, and sex hormone-binding globulin in human term neonates. Biol Neonate 65:287–294

    Article  PubMed  CAS  Google Scholar 

  34. Lagiou P, Hsieh CC, Lipworth L et al (2009) Insulin-like growth factor levels in cord blood, birth weight and breast cancer risk. Br J Cancer 100:1794–1798

    Article  PubMed  CAS  Google Scholar 

  35. Chiesa C, Osborn JF, Haass C et al (2008) Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? Clin Chem 54:550–558

    Article  PubMed  CAS  Google Scholar 

  36. Hung TY, Lin CC, Hwang YS, Lin SJ, Chou YY, Tsai WH (2008) Relationship between umbilical cord blood insulin-like growth factors and anthropometry in term newborns. Acta Paediatr Taiwan 49:19–23

    PubMed  Google Scholar 

  37. Orbak Z, Darcan S, Coker M, Goksen D (2001) Maternal and fetal serum insulin-like growth factor-I (IGF-I) IGF binding protein-3 (IGFBP-3), leptin levels and early postnatal growth in infants born asymmetrically small for gestational age. J Pediatr Endocrinol Metab 14:1119–1127

    PubMed  CAS  Google Scholar 

  38. Martos-Moreno GA, Barrios V, de Saenz PM et al (2009) Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: relationship with glucose metabolism. Eur J Endocrinol 161:381–389

    Article  PubMed  CAS  Google Scholar 

  39. Gohlke BC, Fahnenstich H, Dame C, Albers N (2004) Longitudinal data for intrauterine levels of fetal IGF-I and IGF-II. Horm Res 61:200–204

    Article  PubMed  CAS  Google Scholar 

  40. Zhao P, Zhang XL, Yu C, Lu XY, Wang YM (2010) Umbilical cord serum levels of insulin-like growth factor-1, insulin and growth hormone in neonates with intrauterine growth retardation. Zhongguo Dang Dai Er Ke Za Zhi 12:771–773

    PubMed  Google Scholar 

  41. Barrios V, Argente J, Pozo J et al (1996) Insulin-like growth factor I, insulin-like growth factor binding proteins, and growth hormone binding protein in Spanish premature and full-term newborns. Horm Res 46:130–137

    Article  PubMed  CAS  Google Scholar 

  42. Lo HC, Tsao LY, Hsu WY, Chen HN, Yu WK, Chi CY (2002) Relation of cord serum levels of growth hormone, insulin-like growth factors, insulin-like growth factor binding proteins, leptin, and interleukin-6 with birth weight, birth length, and head circumference in term and preterm neonates. Nutrition 18:604–608

    Article  PubMed  CAS  Google Scholar 

  43. Fant M, Salafia C, Baxter RC et al (1993) Circulating levels of IGFs and IGF binding proteins in human cord serum: relationships to intrauterine growth. Regul Pept 48:29–39

    Article  PubMed  CAS  Google Scholar 

  44. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D (2000) Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab 85:4266–4269

    Article  PubMed  CAS  Google Scholar 

  45. Rohrmann S, Sutcliffe CG, Bienstock JL et al (2009) Racial variation in sex steroid hormones and the insulin-like growth factor axis in umbilical cord blood of male neonates. Cancer Epidemiol Biomarkers Prev 18:1484–1491

    Article  PubMed  CAS  Google Scholar 

  46. Barker DJ (1998) In utero programming of chronic disease. Clin Sci (Lond) 95:115–128

    Article  CAS  Google Scholar 

  47. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C (2000) Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 85:1401–1406

    Article  PubMed  CAS  Google Scholar 

  48. Goodwin PJ, Ennis M, Bahl M et al (2009) High insulin levels in newly diagnosed breast cancer patients reflect underlying insulin resistance and are associated with components of the insulin resistance syndrome. Breast Cancer Res Treat 114:517–525

    Article  PubMed  CAS  Google Scholar 

  49. Gunter MJ, Hoover DR, Yu H et al (2009) Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 101:48–60

    PubMed  CAS  Google Scholar 

  50. Yang G, Lu G, Jin F et al (2001) Population-based, case–control study of blood C-peptide level and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:1207–1211

    PubMed  CAS  Google Scholar 

  51. Maiti B, Kundranda MN, Spiro TP, Daw HA (2010) The association of metabolic syndrome with triple-negative breast cancer. Breast Cancer Res Treat 121:479–483

    Article  PubMed  CAS  Google Scholar 

  52. Troisi R, Potischman N, Roberts JM et al (2003) Correlation of serum hormone concentrations in maternal and umbilical cord samples. Cancer Epidemiol Biomarkers Prev 12:452–456

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anna DeNooyer, MHS, research assistant, and Stacey Meyerer, laboratory manager, both at the Johns Hopkins Bloomberg School of Public Health, for their assistance in the conduct of this study, the delivery room nurses at the Prince George’s Hospital Center and the Johns Hopkins Hospital for collecting the cord blood specimens, and Yuzhen Tao in the laboratory of Dr. Pollak for overseeing the laboratory assays. Authors received grant support from National Cancer Institute grant U54 (Howard CA091431) and U54 (Hopkins CA091409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Agurs-Collins.

Additional information

Drs. Agurs-Collins (formerly of Howard University Cancer Center) and Platz (Hopkins) co-proposed and co-conducted this study. A companion paper on racial variation in the in utero milieu for male births in the context of prostate cancer has been published [45]. PubMed PMID: 19423525; PubMed Central PMCID: PMC3012385. This decision was made a priori to allow the investigators at the two institutions involved in this U54 to each take the lead on one of the papers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agurs-Collins, T., Rohrmann, S., Sutcliffe, C. et al. Racial variation in umbilical cord blood sex steroid hormones and the insulin-like growth factor axis in African-American and white female neonates. Cancer Causes Control 23, 445–454 (2012). https://doi.org/10.1007/s10552-011-9893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-011-9893-6

Keywords

Navigation