Biomedical Microdevices

, 18:88 | Cite as

Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types



This study demonstrates a rapid prototyping approach for fabricating and integrating porous hollow fibers (HFs) into microfluidic device. Integration of HF can enhance mass transfer and recapitulate tubular shapes for tissue-engineered environments. We demonstrate the integration of single or multiple HFs, which can give the users the flexibility to control the total surface area for tissue development. We also present three microfluidic designs to enable different co-culture conditions such as the ability to co-culture multiple cell types simultaneously on a flat and tubular surface, or inside the lumen of multiple HFs. Additionally, we introduce a pressurized cell seeding process that can allow the cells to uniformly adhere on the inner surface of HFs without losing their viabilities. Co-cultures of lung epithelial cells and microvascular endothelial cells were demonstrated on the different platforms for at least five days. Overall, these platforms provide new opportunities for co-culturing of multiple cell types in a single device to reconstruct native tissue micro-environment for biomedical and tissue engineering research.


Co-culture Microfluidic device Hollow fiber Tissue engineering Cell seeding 



The authors acknowledge Andrew M. Goumas and Jonathan W. Thoma for cell preparation. This work was supported by the Defense Threat Reduction Agency (DTRA) interagency agreement CBMXCEL-XL1-2-0001, 100271 A5196, Integration of Novel Technologies for Organ Development and Rapid Assessment of Medical Countermeasures (INTO-RAM).

Supplementary material

10544_2016_102_MOESM1_ESM.docx (2 mb)
ESM 1 Fig. S1 (DOCX 2062 kb)


  1. N. M. Bettahalli, J. Vicente, L. Moroni, G. A. Higuera, C. A. van Blitterswijk, M. Wessling, D. F. Stamatialis, Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Acta Biomater 7, 3312–3324 (2011). doi: 10.1016/j.actbio.2011.06.012 CrossRefGoogle Scholar
  2. N. Diban, D. Stamatialis, Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications. J Chem Technol Biotechnol 89, 633–643 (2014). doi: 10.1002/jctb.4300 CrossRefGoogle Scholar
  3. A. El-Ghalbzouri, E. N. Lamme, C. van Blitterswijk, J. Koopman, M. Ponec, The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 25, 2987–2996 (2004). doi: 10.1016/j.biomaterials.2003.09.098 CrossRefGoogle Scholar
  4. A. M. Ghaemmaghami, M. J. Hancock, H. Harrington, H. Kaji, A. Khademhosseini, Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17, 173–181 (2012). doi: 10.1016/j.drudis.2011.10.029 CrossRefGoogle Scholar
  5. B. R. Grubb, F. R. Schiretz, R. C. Boucher, Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. Am J Phys 273, C21–C29 (1997)Google Scholar
  6. D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber, Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). doi: 10.1126/science.1188302 CrossRefGoogle Scholar
  7. D. Huh, G. A. Hamilton, D. E. Ingber, From 3D cell culture to organs-on-chips. Trends Cell Biol 21, 745–754 (2011). doi: 10.1016/j.tcb.2011.09.005 CrossRefGoogle Scholar
  8. D. Janke, J. Jankowski, M. Ruth, I. Buschmann, H. D. Lemke, D. Jacobi, P. Knaus, E. Spindler, W. Zidek, K. Lehmann, V. Jankowski, The "artificial artery" as in vitro perfusion model. PLoS One 8, e57227 (2013). doi: 10.1371/journal.pone.0057227 CrossRefGoogle Scholar
  9. C. J. Kirkpatrick, S. Fuchs, R. E. Unger, Co-culture systems for vascularization--learning from nature. Adv Drug Deliv Rev 63, 291–299 (2011). doi: 10.1016/j.addr.2011.01.009 CrossRefGoogle Scholar
  10. H. Matsui, B. R. Grubb, R. Tarran, S. H. Randell, J. T. Gatzy, C. W. Davis, R. C. Boucher, Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998)CrossRefGoogle Scholar
  11. J. A. McCarron, R. A. Milks, M. Mesiha, A. Aurora, E. Walker, J. P. Iannotti, K. A. Derwin, Reinforced fascia patch limits cyclic gapping of rotator cuff repairs in a human cadaveric model. J Shoulder Elb Surg 21, 1680–1686 (2012). doi: 10.1016/j.jse.2011.11.039 CrossRefGoogle Scholar
  12. M. Mehling, S. Tay, Microfluidic cell culture. Curr Opin Biotechnol 25, 95–102 (2014). doi: 10.1016/j.copbio.2013.10.005 CrossRefGoogle Scholar
  13. Y. Miki, K. Ono, S. Hata, T. Suzuki, H. Kumamoto, H. Sasano, The advantages of co-culture over mono cell culture in simulating in vivo environment. J Steroid Biochem Mol Biol 131, 68–75 (2012). doi: 10.1016/j.jsbmb.2011.12.004 CrossRefGoogle Scholar
  14. D. Mueller, G. Tascher, U. Muller-Vieira, D. Knobeloch, A. K. Nuessler, K. Zeilinger, E. Heinzle, F. Noor, In-depth physiological characterization of primary human hepatocytes in a 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 5, e207–e218 (2011). doi: 10.1002/term.418 CrossRefGoogle Scholar
  15. P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, G. Goddard, Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10, 2286–2291 (2010). doi: 10.1039/c002457k CrossRefGoogle Scholar
  16. Z. Y. Oo, R. Deng, M. Hu, M. Ni, K. Kandasamy, Bin Ibrahim MS, Ying JY, Zink D, the performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials 32, 8806–8815 (2011). doi: 10.1016/j.biomaterials.2011.08.030 CrossRefGoogle Scholar
  17. N. K. Paschos, W. E. Brown, R. Eswaramoorthy, H. JC, K. A. Athanasiou, Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 9, 488–503 (2015). doi: 10.1002/term.1870 CrossRefGoogle Scholar
  18. S. K. Sia, G. M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003). doi: 10.1002/elps.200305584 CrossRefGoogle Scholar
  19. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, N. L. Jeon, A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2, 599–605 (2005). doi: 10.1038/nmeth777 CrossRefGoogle Scholar
  20. R. E. Unger, K. Peters, Q. Huang, A. Funk, D. Paul, C. J. Kirkpatrick, Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 26, 3461–3469 (2005). doi: 10.1016/j.biomaterials.2004.09.047 CrossRefGoogle Scholar
  21. G. Velve-Casquillas, M. Le Berre, M. Piel, P. T. Tran, Microfluidic tools for cell biological research. Nano Today 5, 28–47 (2010). doi: 10.1016/j.nantod.2009.12.001 CrossRefGoogle Scholar
  22. M. H. Wu, S. B. Huang, G. B. Lee, Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010). doi: 10.1039/b921695b CrossRefGoogle Scholar
  23. N. Wung, S. M. Acott, D. Tosh, M. J. Ellis, Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol Lett 36, 2357–2366 (2014). doi: 10.1007/s10529–014-1619-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Analytics, Intelligence and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations