, Volume 130, Issue 1–2, pp 69–83 | Cite as

Chamber measurements of high CO2 emissions from a rainforest stream receiving old C-rich regional groundwater

  • Diana Oviedo-Vargas
  • Diego Dierick
  • David P. Genereux
  • Steven F. Oberbauer


Carbon emissions from fluvial systems are a key component of local and regional carbon cycles. We used floating chambers to investigate the CO2 flux from stream water to air (\({\text{f}}_{{{\text{CO}}_{ 2} }}\)) in the Arboleda, a stream in the lowland rainforest of Costa Rica, fed partly by old regional groundwater high in dissolved inorganic carbon (DIC). Drifting and static chambers showed \({\text{f}}_{{{\text{CO}}_{ 2} }}\) averaging 35.5 and 72.7 μmol C m−2 s−1, respectively, bracketing the previously-published \({\text{f}}_{{{\text{CO}}_{ 2} }}\) value of 56 μmol C m−2 s−1 obtained using tracer methods in this stream. These values are much higher than most \({\text{f}}_{{{\text{CO}}_{ 2} }}\) data in the literature and reflect a large flux of deep crustal (non-biogenic) CO2 out of the Arboleda, a flux that does not represent a component of ecosystem respiration. Static chambers appeared to overestimate \({\text{f}}_{{{\text{CO}}_{ 2} }}\) by creating artificial turbulence, while drifting chambers may have underestimated \({\text{f}}_{{{\text{CO}}_{ 2} }}\) by under-sampling areas of potentially high gas exchange (e.g., riffles around coarse woody debris obstructions). Both static and drifting chambers revealed high spatial heterogeneity in \({\text{f}}_{{{\text{CO}}_{ 2} }}\) at the scale of 5–30 m reaches. Some observed temporal trends were localized, e.g., among three reaches with repeated measurements through the wet and dry seasons, (1) only the reach located between the other two showed significantly lower \({\text{f}}_{{{\text{CO}}_{ 2} }}\) during the dry season, and (2) the highest and lowest \({\text{f}}_{{{\text{CO}}_{ 2} }}\) were consistently observed in the reaches farthest upstream and downstream, respectively. Streams like the Arboleda receiving significant inputs of high-DIC regional groundwater merit additional study as hotspots for C emissions from terrestrial ecosystems.


Stream Carbon dioxide Chamber Emissions Flux Regional groundwater Gas exchange 



The authors thank Emily Barnett, Ruben Vargas, Danilo Villegas, and William Ureña for their help with the field and laboratory tasks. Financial support from the US Department of Energy (award DE-SC0006703) is gratefully acknowledged. Logistical support at the field site was provided by the Organization for Tropical Studies.

Supplementary material

10533_2016_243_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1224 kb)


  1. Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Ochieng Omengo F, Geeraert N, Deirmendjian L, Polsenaere P, Borges AV (2015) Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12:67–78CrossRefGoogle Scholar
  2. Alin SR, Rasera M-d-F FL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res-Biogeo 116:G01009. doi: 10.1029/2010jg001398 CrossRefGoogle Scholar
  3. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. doi: 10.1890/100014 CrossRefGoogle Scholar
  4. Belanger TV, Korzum EA (1991) Critique of floating-dome technique for estimating reaeration rates. J Environ Eng 117:144–150CrossRefGoogle Scholar
  5. Billett MF, Moore T (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054CrossRefGoogle Scholar
  6. Billett MF, Garnett MH, Hardie SL (2006) A direct method to measure 14CO2 lost by evasion from surface waters. Radiocarbon 48:61–68CrossRefGoogle Scholar
  7. Billett MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys Res Lett 34:L23401. doi: 10.1029/2007GL031797 CrossRefGoogle Scholar
  8. Billett MF, Garnett MH, Dinsmore K (2015) Should aquatic CO2 evasion be included in contemporary carbon budgets for peatland ecosystems? Ecosystems 18:471–480. doi: 10.1007/s10021-014-9838-5 CrossRefGoogle Scholar
  9. Broecker WS, Peng T-H (1984) Gas exchange measurements in natural systems. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Springer, Berlin, pp 479–493CrossRefGoogle Scholar
  10. Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842. doi: 10.1038/ngeo1294 CrossRefGoogle Scholar
  11. Campeau A, Lapierre J-F, Vachon D, del Giorgio PA (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem Cy 28:57–69CrossRefGoogle Scholar
  12. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  13. Crawford JT (2012) Hydrologic and geomorphologic controls on carbon dioxide and methane emissions from a headwater stream network of interior Alaska. Masters Thesis, University of WisconsinGoogle Scholar
  14. Crawford JT, Striegl RG, Wickland KP, Dornblaser MM, Stanley EH (2013) Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J Geophys Res-Biogeosci 118:482–494CrossRefGoogle Scholar
  15. Crawford JT, Lottig NR, Stanley EH, Walker JF, Hanson PC, Finlay JC, Striegl RG (2014) CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance. Global Biogeochem Cy 28:197–210. doi: 10.1002/2013GB004661 CrossRefGoogle Scholar
  16. Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Drewer J, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob Change Biol 16:2750–2762. doi: 10.1111/j.1365-2486.2009.02119.x CrossRefGoogle Scholar
  17. Doyle MW, Ensign SH (2009) Alternative reference frames in river system science. Bioscience 59:499–510CrossRefGoogle Scholar
  18. Duran AP, Hemond HF (1984) Dichlorodifluoromethane (Freon-12) as a tracer for nitrous oxide release from a nitrogen-enriched river. In: Brutsaert W, Jirka GH (eds) Gas Transfer at Water Surfaces. D. Reidel Publishing Co., Hingham, pp 421–429CrossRefGoogle Scholar
  19. Genereux DP, Hemond HF (1992) Determination of gas exchange rate constants for a small stream on Walker Branch Watershed, Tennessee. Water Resour Res 28:2365–2374CrossRefGoogle Scholar
  20. Genereux DP, Jordan MT (2006) Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: a review. J Hydrol 320:385–399. doi: 10.1016/j.jhydrol.2005.07.023 CrossRefGoogle Scholar
  21. Genereux DP, Jordan MT, Carbonell D (2005) A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica. Water Resour Res 41:W04011. doi: 10.1029/2004WR003635 CrossRefGoogle Scholar
  22. Genereux DP, Webb M, Solomon DK (2009) Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: evidence from carbon, helium, and chlorine. Water Resour Res 45:W08413. doi: 10.1029/2008WR007630 CrossRefGoogle Scholar
  23. Genereux DP, Nagy LA, Osburn CL, Oberbauer SF (2013) A connection to deep groundwater alters ecosystem carbon fluxes and budgets: example from a Costa Rican rainforest. Geophys Res Lett 40:2066–2070. doi: 10.1002/grl.50423 CrossRefGoogle Scholar
  24. Hach Company (2013) Digital titration manual: model 16900. 25th edn. US patent 4086062Google Scholar
  25. Hartman B, Hammond DE (1984) Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay. J Geophys Res-Oceans (1978–2012) 89:3593–3603CrossRefGoogle Scholar
  26. Hope D, Palmer SM, Billett MF, Dawson JJ (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857CrossRefGoogle Scholar
  27. Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci. doi: 10.1038/ngeo2507 Google Scholar
  28. Hunt CW, Salisbury JE, Vandemark D (2011) Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8:3069–3076CrossRefGoogle Scholar
  29. Huotari J, Haapanala S, Pumpanen J, Vesala T, Ojala A (2013) Efficient gas exchange between a boreal river and the atmosphere. Geophys Res Lett 40:5683–5686CrossRefGoogle Scholar
  30. Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JPH, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401. doi: 10.1029/2008GL034619 CrossRefGoogle Scholar
  31. Jonsson A, Algesten G, Bergström A-K, Bishop K, Sobek S, Tranvik LJ, Jansson M (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150CrossRefGoogle Scholar
  32. Kilpatrick FA, Rathbun R, Yotsukura N, Parker G, DeLong L (1989) Determination of stream reaeration coefficients by use of tracers, Department of the Interior. US Geological Survey, VirginiaGoogle Scholar
  33. Loescher HW, Gholz H, Jacobs JM, Oberbauer SF (2005) Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. J Hydrol 315:274–294. doi: 10.1016/j.jhydrol.2005.03.040 CrossRefGoogle Scholar
  34. Lorke A, Bodmer P, Noss C, Alshboul Z, Koschorreck M, Somlai-Haase C, Bastviken D, Flury S, McGinnis DF, Maeck A, Müller D (2015) Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences 12:7013–7024. doi: 10.5194/bg-12-7013-2015 CrossRefGoogle Scholar
  35. Matthews CJ, St. Louis VL, Hesslein RH (2003) Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ Sci Tech 37:772–780CrossRefGoogle Scholar
  36. Neu V, Neill C, Krusche AV (2011) Gaseous and fluvial carbon export from an Amazon forest watershed. Biogeochemistry 105:133–147. doi: 10.1007/s10533-011-9581-3 CrossRefGoogle Scholar
  37. Oviedo-Vargas D, Genereux DP, Dierick D, Oberbauer SF (2015) The effect of regional groundwater on carbon dioxide and methane emissions from a lowland rainforest stream in Costa Rica. J Geophys Res-Biogeosci. doi: 10.1002/2015JG003009 Google Scholar
  38. Pacheco FA (2015) Regional groundwater flow in hard rocks. Sci Total Environ 506:182–195CrossRefGoogle Scholar
  39. Panneer Selvam B, Natchimuthu S, Arunachalam L, Bastviken D (2014) Methane and carbon dioxide emissions from inland waters in India-implications for large scale greenhouse gas balances. Glob Change Biol 20:3397–3407. doi: 10.1111/gcb.12575 CrossRefGoogle Scholar
  40. Parker GW, Gay FB (1987) A procedure for estimating reaeration coefficients for Massachusetts streams. U.S. Geological Survey Water Resources Investigations Report 86-4111, Boston, MA, p 34Google Scholar
  41. Pringle CM, Rowe GL, Triska FJ, Fernandez JF, West J (1993) Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica. Limnol Oceanogr 38:753–774. doi: 10.4319/lo.1993.38.4.0753 CrossRefGoogle Scholar
  42. Rasera M-d-FF, Krusche AV, Richey JE, Ballester MV, Victória RL (2013) Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116:241–259CrossRefGoogle Scholar
  43. Rathbun RE, Tai DY (1982) Volatilization of organic compounds from streams. J Environ Eng Div, Proc ASCE 108(EE5):973–989Google Scholar
  44. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr-Fluids Environ 2:41–53CrossRefGoogle Scholar
  45. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi: 10.1038/nature12760 CrossRefGoogle Scholar
  46. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  47. Sand-Jensen K, Staehr PA (2012) CO2 dynamics along Danish lowland streams: water-air gradients, piston velocities and evasion rates. Biogeochemistry 111:615–628CrossRefGoogle Scholar
  48. Schaller MF, Fan Y (2009) River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J Geophys Res-Atmos 1984–2012:114. doi: 10.1029/2008JD010636 Google Scholar
  49. Smerdon BD, Gardner WP, Harrington GA, Tickell SJ (2012) Identifying the contribution of regional groundwater to the baseflow of a tropical river (Daly River, Australia). J Hydrol 464:107–115CrossRefGoogle Scholar
  50. Solomon DK, Genereux DP, Plummer LN, Busenberg E (2010) Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers. Water Resour Res 46:W04518. doi: 10.1029/2009WR008341 CrossRefGoogle Scholar
  51. Striegl RG, Dornblaser M, McDonald C, Rover J, Stets E (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cy. doi: 10.1029/2012GB004306 Google Scholar
  52. Stumm W, Morgan J (1996) Aquatic chemistry chemical equilibra and rates in natural waters, environmental science and technology Series. Wiley, New YorkGoogle Scholar
  53. Teodoru CR, Nyoni F, Borges A, Darchambeau F, Nyambe I, Bouillon S (2015) Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12:2431–2453CrossRefGoogle Scholar
  54. Tóth J (2009) Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  55. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–1732. doi: 10.4319/lo.2010.55.4.1723 CrossRefGoogle Scholar
  56. Wallin MB, Öquist MG, Buffam I, Billett MF, Nisell J, Bishop KH (2011) Spatiotemporal variability of the gas transfer coefficient (K CO2) in boreal streams: implications for large scale estimates of CO2 evasion. Global Biogeochem Cy. doi: 10.1029/2010GB003975 Google Scholar
  57. Wu L-C, Wei C-B, Yang S-S, Chang T-H, Pan H-W, Chung Y-C (2007) Relationship between carbon dioxide/methane emissions and the water quality/sediment characteristics of Taiwan’s main rivers. J Air Waste Ma 57:319–327CrossRefGoogle Scholar
  58. Zanon C, Genereux DP, Oberbauer SF (2014) Use of a watershed hydrologic model to estimate interbasin groundwater flow in a Costa Rican rainforest. Hydrol Process 28:3670–3680. doi: 10.1002/hyp.9917 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Diana Oviedo-Vargas
    • 1
  • Diego Dierick
    • 2
  • David P. Genereux
    • 1
  • Steven F. Oberbauer
    • 2
  1. 1.Marine Earth and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  2. 2.Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations