, Volume 126, Issue 1–2, pp 85–98 | Cite as

Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths

  • Xueyong Pang
  • Biao Zhu
  • Xiaotao Lü
  • Weixin Cheng


The decomposition of soil organic carbon (SOC) is intrinsically sensitive to temperature. However, the degree to which the temperature sensitivity of SOC decomposition (as often measured in Q10 value) varies with soil depth and labile substrate availability remain unclear. This study explores (1) how the Q10 of SOC decomposition changes with increasing soil depth, and (2) how increasing labile substrate availability affects the Q10 at different soil depths. We measured soil CO2 production at four temperatures (6, 14, 22 and 30 °C) using an infrared CO2 analyzer. Treatments included four soil depths (0–20, 20–40, 40–60 and 60–80 cm), four sites (farm, redwood forest, ungrazed and grazed grassland), and two levels of labile substrate availability (ambient and saturated by adding glucose solution). We found that Q10 values at ambient substrate availability decreased with increasing soil depth, from 2.0–2.4 in 0–20 cm to 1.5–1.8 in 60–80 cm. Moreover, saturated labile substrate availability led to higher Q10 in most soil layers, and the increase in Q10 due to labile substrate addition was larger in subsurface soils (20–80 cm) than in surface soils (0–20 cm). Further analysis showed that microbial biomass carbon (MBC) and SOC best explained the variation in Q10 at ambient substrate availability across ecosystems and depths (R2 = 0.37, P < 0.001), and MBC best explained the variation in the change of Q10 between control and glucose addition treatment (R2 = 0.14, P = 0.003). Overall, these results indicate that labile substrate limitation of the temperature sensitivity of SOC decomposition, as previously shown in surface soils, is even stronger for subsoils. Understanding processes controlling the labile substrate availability (e.g., with rising atmospheric CO2 concentration and land use change) should advance our prediction of the fate of subsoil SOC in a warmer world.


Soil respiration Q10 Michaelis–Menten Glucose Subsoil 



We thank Johanna Pausch, Amy Concilio, and Lindsey Kelly for laboratory assistance, and anonymous reviewers and associate editors for their insightful comments on earlier versions of our manuscript. This study was supported by grants from the U.S. Department of Energy’s Office of Science through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University (DE-FC02-06ER64158), the U.S. National Science Foundation, Division of Environmental Biology’s Ecosystem Studies Program (DEB-1354098), the Overseas Foundation of the Chinese Academy of Sciences, National Science Foundation of China (31270492), and the Office of 985 Project at Peking University.

Supplementary material

10533_2015_141_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2474 kb)


  1. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562. doi: 10.1146/ CrossRefGoogle Scholar
  2. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  3. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der inversion von Rohzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
  4. Balser TC, Wixon DL (2009) Investigating biological control over soil carbon temperature sensitivity. Global Change Biol 15(12):2935–2949. doi: 10.1111/j.1365-2486.2009.01946.x CrossRefGoogle Scholar
  5. Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29(7):1023–1032. doi: 10.1016/s0038-0717(97)00030-8 CrossRefGoogle Scholar
  6. Bosatta E, Ǻgren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31(13):1889–1891. doi: 10.1016/s0038-0717(99)00105-4 CrossRefGoogle Scholar
  7. Cheng WX, Coleman DC (1989) A simple method for measuring CO2 in a continuous air-flow system—modifications to the substrate-induced respiration technique. Soil Biol Biochem 21(3):385–388. doi: 10.1016/0038-0717(89)90148-x CrossRefGoogle Scholar
  8. Cheng W, Virginia RA (1993) Measurement of microbial biomass in arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures. Soil Biol Biochem 25(1):135–141. doi: 10.1016/0038-0717(93)90251-6 CrossRefGoogle Scholar
  9. Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28(10–11):1283–1288. doi: 10.1016/s0038-0717(96)00138-1 CrossRefGoogle Scholar
  10. Cleveland C, Nemergut D, Schmidt S, Townsend A (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82(3):229–240. doi: 10.1007/s10533-006-9065-z CrossRefGoogle Scholar
  11. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biol 14(4):868–877. doi: 10.1111/j.1365-2486.2008.01541.x CrossRefGoogle Scholar
  12. Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein M, Wetterstedt JAM, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Global Change Biol 17(11):3392–3404. doi: 10.1111/j.1365-2486.2011.02496.x CrossRefGoogle Scholar
  13. Curiel Yuste J, Ma S, Baldocchi DD (2010) Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux. Biogeochemistry 98(1–3):127–138. doi: 10.1007/s10533-009-9381-1 CrossRefGoogle Scholar
  14. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. doi: 10.1038/nature04514 CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol 12(2):154–164. doi: 10.1111/j.1365-2486.2005.01065.x CrossRefGoogle Scholar
  16. Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65. doi: 10.1016/j.soilbio.2012.03.011 CrossRefGoogle Scholar
  17. Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021):57–59. doi: 10.1038/nature03138 CrossRefGoogle Scholar
  18. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biol 9(9):1322–1332. doi: 10.1046/j.1365-2486.2003.00663.x CrossRefGoogle Scholar
  19. Fissore C, Giardina CP, Swanston CW, King GM, Kolka RK (2009) Variable temperature sensitivity of soil organic carbon in North American forests. Global Change Biol 15(9):2295–2310. doi: 10.1111/j.1365-2486.2009.01903.x CrossRefGoogle Scholar
  20. Fissore C, Giardina CP, Kolka RK (2013) Reduced substrate supply limits the temperature response of soil organic carbon decomposition. Soil Biol Biochem 67:306–311. doi: 10.1016/j.soilbio.2013.09.007 CrossRefGoogle Scholar
  21. Foereid B, Ward DS, Mahowald N, Paterson E, Lehmann J (2014) The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth Syst Dynam 5(1):211–221. doi: 10.5194/esd-5-211-2014 CrossRefGoogle Scholar
  22. German DP, Marcelo KRB, Stone MM, Allison SD (2012) The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Global Change Biol 18(4):1468–1479. doi: 10.1111/j.1365-2486.2011.02615.x CrossRefGoogle Scholar
  23. Gershenson A, Bader NE, Cheng W (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biol 15(1):176–183. doi: 10.1111/j.1365-2486.2008.01827.x CrossRefGoogle Scholar
  24. Gillabel J, Cebrian-Lopez B, Six J, Merckx R (2010) Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biol 16(10):2789–2798. doi: 10.1111/j.1365-2486.2009.02132.x CrossRefGoogle Scholar
  25. Hassouna M, Massiani C, Dudal Y, Pech N, Theraulaz F (2010) Changes in water extractable organic matter (WEOM) in a calcareous soil under field conditions with time and soil depth. Geoderma 155(1–2):75–85. doi: 10.1016/j.geoderma.2009.11.026 CrossRefGoogle Scholar
  26. Holland EA, Neff JC, Townsend AR, McKeown B (2000) Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochem Cycle 14(4):1137–1151. doi: 10.1029/2000GB001264 CrossRefGoogle Scholar
  27. Jin X, Wang S, Zhou Y (2008) Microbial CO2 production from surface and subsurface soil as affected by temperature, moisture, and nitrogen fertilisation. Aust J Soil Res 46(3):273–280. doi: 10.1071/SR07144 CrossRefGoogle Scholar
  28. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436. doi: 10.2307/2641104 CrossRefGoogle Scholar
  29. Jungqvist G, Oni SK, Teutschbein C, Futter MN (2014) Effect of climate change on soil temperature in Swedish boreal forests. PLoS One. doi: 10.1371/journal.pone.0093957 Google Scholar
  30. Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J (2010) Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol Biochem 42(1):72–82. doi: 10.1016/j.soilbio.2009.10.002 CrossRefGoogle Scholar
  31. Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke J-A, Wookey PA, Agren GI, Sebastia M-T, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513(7516):81–84. doi: 10.1038/nature13604 CrossRefGoogle Scholar
  32. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38(9):2510–2518. doi: 10.1016/j.soilbio.2006.01.030 CrossRefGoogle Scholar
  33. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171(1):61–82. doi: 10.1002/jpln.200700048 CrossRefGoogle Scholar
  34. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371. doi: 10.1016/j.soilbio.2010.04.003 CrossRefGoogle Scholar
  35. Larionova AA, Yevdokimov IV, Bykhovets SS (2007) Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences 4(6):1073–1081. doi: 10.5194/bg-4-1073-2007 CrossRefGoogle Scholar
  36. Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75(3):433–453. doi: 10.1007/s10533-005-2237-4 CrossRefGoogle Scholar
  37. Lin Q, Brookes PC (1999) Comparison of substrate induced respiration, selective inhibition and biovolume measurements of microbial biomass and its community structure in unamended, ryegrass-amended, fumigated and pesticide-treated soils. Soil Biol Biochem 31(14):1999–2014. doi: 10.1016/S0038-0717(99)00122-4 CrossRefGoogle Scholar
  38. Lomander A, Katterer T, Andren O (1998) Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol Biochem 30(14):2017–2022. doi: 10.1016/s0038-0717(98)00076-5 CrossRefGoogle Scholar
  39. Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66. doi: 10.1016/s0065-2113(05)88002-2 CrossRefGoogle Scholar
  40. Luo Y, Zhou X (2007) Soil respiration and the environment. Academic Press, OxfordGoogle Scholar
  41. MacDonald NW, Randlett DL, Zak DR (1999) Soil warming and carbon loss from a lake states spodosol. Soil Sci Soc Am J 63:211–218CrossRefGoogle Scholar
  42. Marx M-C, Kandeler E, Wood M, Wermbter N, Jarvis SC (2005) Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol Biochem 37(1):35–48. doi: 10.1016/j.soilbio.2004.05.024 CrossRefGoogle Scholar
  43. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Zeitung 49:333–369Google Scholar
  44. Rey A, Pegoraro E, Jarvis PG (2008) Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). Eur J Soil Sci 59(6):1049–1062. doi: 10.1111/j.1365-2389.2008.01065.x CrossRefGoogle Scholar
  45. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1–2):143–158. doi: 10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  46. Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33(10):1131–1142. doi: 10.1016/s0146-6380(02)00088-8 CrossRefGoogle Scholar
  47. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi: 10.1038/nature10386 CrossRefGoogle Scholar
  48. Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kogel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691. doi: 10.5194/bg-10-1675-2013 CrossRefGoogle Scholar
  49. Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43. doi: 10.1016/S0065-2113(07)00001-6 CrossRefGoogle Scholar
  50. Spielvogel S, Prietzel J, Kogel-Knabner I (2008) Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. Eur J Soil Sci 59(4):674–692. doi: 10.1111/j.1365-2389.2008.01030.x CrossRefGoogle Scholar
  51. Stark JM, Firestone MK (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol Biochem 28(10–11):1307–1317. doi: 10.1016/s0038-0717(96)00133-2 CrossRefGoogle Scholar
  52. Stone MM, DeForest JL, Plante AF (2014) Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol Biochem 75:237–247. doi: 10.1016/j.soilbio.2014.04.017 CrossRefGoogle Scholar
  53. Subke JA, Bahn M (2010) On the ‘temperature sensitivity’ of soil respiration: can we use the immeasurable to predict the unknown? Soil Biol Biochem 42(9):1653–1656. doi: 10.1016/j.soilbio.2010.05.026 CrossRefGoogle Scholar
  54. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10(2):399–411. doi: 10.2307/2641102 CrossRefGoogle Scholar
  55. Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272(5260):393–396. doi: 10.1126/science.272.5260.393 CrossRefGoogle Scholar
  56. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  57. van’t Hoff JH (1899) Lectures on theoretical and physical chemistry. E. Arnold, LondonGoogle Scholar
  58. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fert Soils 46(1):1–15. doi: 10.1007/s00374-009-0413-8 CrossRefGoogle Scholar
  59. Winkler JP, Cherry RS, Schlesinger WH (1996) The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biol Biochem 28(8):1067–1072. doi: 10.1016/0038-0717(96)00076-4 CrossRefGoogle Scholar
  60. Zhu B, Cheng W (2011a) Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol Biochem 43(4):866–869. doi: 10.1016/j.soilbio.2010.12.021 CrossRefGoogle Scholar
  61. Zhu B, Cheng W (2011b) Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biol 17(6):2172–2183. doi: 10.1111/j.1365-2486.2010.02354.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xueyong Pang
    • 1
  • Biao Zhu
    • 2
  • Xiaotao Lü
    • 3
  • Weixin Cheng
    • 3
    • 4
  1. 1.Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization of Chinese Academy of Sciences, and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  2. 2.Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
  3. 3.State Key Laboratory of Forest and Soil Ecology, Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  4. 4.Department of Environmental StudiesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations