Advertisement

Biogeochemistry

, Volume 112, Issue 1–3, pp 293–309 | Cite as

Relationship between the weathering of clay minerals and the nitrification rate: a rapid tree species effect

  • Louis Mareschal
  • Marie-Pierre Turpault
  • Pascal Bonnaud
  • Jacques Ranger
Article

Abstract

We compared the properties of the clay mineral fraction and the composition of soil solutions in a Fagus sylvatica coppice (native forest) and four adjacent plantations of Pseudotsuga menziesii, Pinus nigra, Picea abies and Quercus sessiliflora planted in 1976. The results revealed changes of clay fraction properties due to tree species effect. Clay samples from Douglas fir and pine stands differ when compared to other species. Twenty-eight years after planting, we observed the following changes: a more pronounced swelling after citrate extraction and ethylene glycol solvation, a higher CEC and a smaller poorly crystallised aluminium content. All these changes affecting the clay fraction agreed well with soil solution analyses which revealed high NO3 , H+ and Al concentrations under Douglas fir and pine. These changes were explained by a strong net nitrification under Douglas fir and pine stands when compared with other tree species. The higher NO3 concentrations in soil solutions should be linked to the presence, type and activity of ammonia-oxiding bacteria which are likely influenced by tree species. The production of NO3 in excess of biological demand leads to a net production of hydrogen ion and enhances the dissolution of poorly crystallised Al-minerals. Secondary Al-bearing minerals constituted the principal acid-consuming system in these soils. As a consequence, the depletion of interlayer spaces of hydroxyinterlayered minerals increases the number of sites for exchangeable cation fixation and increases CEC of the clay fraction. The dissolution of Al oxy-hydroxides explain the increase in Al concentrations of soil solutions under Douglas fir and pine stands when compared to other species. Nitrate and dissolved aluminium were conjointly leached in the soil solutions. A change in environmental conditions, like an introduction of tree species, enough modifies soil processes to induce significant changes in the soil mineralogical composition even over a period of time as short as some tens of years. Generally, mineral weathering has been considered to be very slow and unlikely to change over tens of years, resulting in few studies capable of detecting changes in mineralogy. This study appears to have detected changes in clay mineralogy during a period of 28 years after the planting of forest species. Our study represents a single location with a limited block design, but causes us to conclude that the observed changes could be widely representative. Where available, archived samples should be utilized and long-term experiments set up so that similar changes can be tested for and detected using more robust designs. The plausible hypothesis we present to explain apparent changes in clay mineralogy has strong relevance to the sustainable management of land.

Keywords

Acid dissolution Clay minerals Nitrification Smectitic layer Tree species Weathering 

Abbrevations

BS

Base saturation

c

Citrate treatment

CEC

Cation exchange capacity

CwS

Coppice with standards

EA

Exchangeable acidity

EG

Ethylene glycol treatment

HIM

Hydroxy-interlayered mineral

HIS

Hydroxy-interlayered smectite

HIV

Hydroxy-interlayered vermiculite

ICP-AES

Inductively coupled plasma spectrometry-atomic emission spectrometry

XRD

X-ray diffraction

Notes

Acknowledgments

We would like to thank D. Gelhaye for field assistance and J. P. Calmet for sample preparation. This work received support from the GIP Ecofor, which manages the field site as a part of the ORE Network (Observatoire de Recherches pour l’Environnement, FORE-T).

References

  1. Augusto L, Turpault MP, Ranger J (2000) Impact of forest tree species on feldspar weathering rates. Geoderma 96:215–237CrossRefGoogle Scholar
  2. Augusto L, Ranger J, Turpault MP, Bonnaud P (2001) Experimental in situ transformation of vermiculites to study the weathering impact of tree species on the soil. Eur J Soil Sci 52:81–92CrossRefGoogle Scholar
  3. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253CrossRefGoogle Scholar
  4. Aurousseau P, Curmi P, Buille S, Charpentier S (1983) Les vermiculites hydroxy alumineuses du Massif Armoricain (France): approche minéralogique, microanalytiques et thermodynamiques. Geoderma 31:17–40CrossRefGoogle Scholar
  5. Barnhisel RI, Bertsch PM (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, MadisonGoogle Scholar
  6. Barré P, Velde B, Abbadie L (2007) Dynamic role of “illite-like” clay minerals in temperate soils: facts and hypotheses. Biogeochemistry 82:77–88CrossRefGoogle Scholar
  7. Berdén M, Nilsson S, Nyman P (1997) Ion leaching before and after clearcutting in a Norway spruce stand—effects of long-term application of ammonium nitrate and superphosphate. Water Air Soil Poll 93:1–26Google Scholar
  8. Berner EK, Berner RA, Moulton KL (2003) Plants and mineral weathering: present and past. Treatise Geochem 5:169–188Google Scholar
  9. Beyer L, Blume H-P, Henß B, Peters M (1993) Soluble aluminium -and iron- organic complexes and carbon cycle in Hapludaffs and Haplorthods under forest and cultivation. Sci Total Environ 138:57–76CrossRefGoogle Scholar
  10. Binkley D (1996) The influence of tree species on forest soils: processes and patterns. In: Cornforth IS, Mead DJ (eds) Proceedings of the trees and soil workshop, 1st edn. Agronnomy Society of New Zealand Special Publication, CanterburyGoogle Scholar
  11. Binkley D, Giardina C (1998) Why do tree species affect soils? The Warp and Woof of tree soil interactions. Biogeochemistry 42:89–106CrossRefGoogle Scholar
  12. Bolan N, Hedley M, White R (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63CrossRefGoogle Scholar
  13. Bouabid R, Edward A, Bloom P (1995) Characterization of the weathering 778 status of feldspar minerals in sandy soils of Minnesota using SEM and EDX. Geoderma 66:137–149CrossRefGoogle Scholar
  14. Boudot JP, Becquer T, Merlet D, Rouiller J (1994) Aluminium toxicity in declining forests: a general overview with seasonal assessment in a silver fir forest in the Vosges Mountains (France). Ann Sci For 51:27–51CrossRefGoogle Scholar
  15. Breemen NV, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils. Plant Soil 75:283–308CrossRefGoogle Scholar
  16. Brêthes A, Brun JJ, Jabiol B, Ponge JF, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann Sci For 52:535–546CrossRefGoogle Scholar
  17. Burt R, Alexander EB (1996) Soil development on moraines of Medenhall glacier, Southeast Alaska. 2. Chemical transformations and soil micromorphology. Geoderma 72:19–36CrossRefGoogle Scholar
  18. Calvaruso C, Mareschal L, Turpault MP, Leclerc E (2009) Rapid clay weathering in the rhizosphere of norway Spruce and oak in an acid forest ecosystem. Soil Sci Soc Am J 73:331–338CrossRefGoogle Scholar
  19. Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol Biochem 32:47–57CrossRefGoogle Scholar
  20. Cornu S, Besnault A, Bermond A (2008) Soil podzolisation induced by reforestation as shown by sequential and kinetic extractions of Fe and Al. Eur J Soil Sci 59(222):232Google Scholar
  21. Dahlgren RA, Driscoll CT, McAvoy DC (1989) Aluminium precipitation and dissolution rates in Spodosol Bs horizons in the Northeastern USA. Soil Sci Soc Am J 53:1045CrossRefGoogle Scholar
  22. Dijkstra FA, Fitzhugh R (2003) Aluminium solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United Sates. Geoderma 114:33–47CrossRefGoogle Scholar
  23. Driscoll CT, Baker JP, Bisogni JJ, Schofied CL (1980) Effect of aluminium speciation on fish in dilute acidified waters. Nature 28:161CrossRefGoogle Scholar
  24. Egli M, Mirabella A, Fitze P (2001) Clay mineral transformations in soils affected by fluorine and depletion of organic matter within a time span of 24 years. Geoderma 103:307–334CrossRefGoogle Scholar
  25. Falkengrengrerup U, Bergkvist B (1995) Effects of acidifying air-pollutants on soil/soil solution chemistry of forest ecosystems. Anal Chim 85:317–327Google Scholar
  26. Fernadez-Sanjurjo MJ, Alvarez E, Garcia-Rodeja E (1998) Speciation and solubility control of aluminium in soils developed from slates of the river Sor watershed (Galicia, NW Spain). Air Soil Poll 103:35–53CrossRefGoogle Scholar
  27. Fichter J, Dambrine E, Turpault MP, Ranger J (1998) Base cation supply in spruce and beech ecosystems of the Strengbach catchment (Vosges Mountains, N-E France). Water Air Soil Poll 104:125–148CrossRefGoogle Scholar
  28. Finzi AC, van Breemen N, Canham CD (1998) Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8:440–446Google Scholar
  29. Forêt M (2004) Cartographie géostatistique des propriétés de sols forestiers. Cas du dispositf expérimental de Breuil (Morvan, France). M.Sc dissertation, Université de Nancy IGoogle Scholar
  30. Frank U, Gebhart H (1989) Mineralverwitterung, Tonmineralumwandlung und Tonzerstörungals Folge starker Bodenversauerung auf ausgewählten Waldstandorten. Mitt Dtsch Bodenkd Ges 59:1163–1168Google Scholar
  31. Habs H (1997) Aluminum. Environmental health criteria 194. World Health Organization, GenevaGoogle Scholar
  32. Haug A (1984) Molecular aspects of aluminium toxicity. Crit Rev Plant Sci 1:345–373CrossRefGoogle Scholar
  33. Hem J D, Robertson CE, Lind CJ, Polzer WL (1973) Chemical interactions of aluminum with aqueous silica at 25C. U.S. Geological survey water supply paper, 1827-E, WashingtonGoogle Scholar
  34. Jaffrain J (2006) Effet des essences forestières sur le fonctionnement organo-minéral d’un sol acide: observations et modélisation. Doctoral dissertation, Université de Nancy IGoogle Scholar
  35. Ji-Quan X (1983) Distribution of clay minerals in the soils of China. Soil Sci 135:18–25CrossRefGoogle Scholar
  36. Johnson NM, Driscoll CT, Eaton JS, Likens GE, McDowell WH (1981) “Acid rain”, dissolved aluminium and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochim Cosmochim Acta 45:1421CrossRefGoogle Scholar
  37. Karathanasis AD, Adams F, Hajek BF (1983) Stability relationships in kaolinite, gibbsite and Al-hydroxyinterlayered vermiculite soil systems. Soil Sci Soc Am J 47:1247–1251CrossRefGoogle Scholar
  38. Kirikae M, Shibata H, Tanaka Y, Sakuma T, Hatano R (2001) Significance of nitrification and vegetation uptake in proton budgets in forest surface soil. Soil Sci Plant Nutr 47:253–264CrossRefGoogle Scholar
  39. Kolka RK, Grigal DF, Nater EA (1996) Forest soil mineral weathering rates: 876 use of multiple approaches. Geoderma 73:1–21CrossRefGoogle Scholar
  40. Lelong F, Dupraz C, Durand P, Didon-Lescot JF (1990) Effects of vegetation type on the biogeochemistry of small catchments (Mont Lozere, France). J Hydrol 116:125–145CrossRefGoogle Scholar
  41. Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308CrossRefGoogle Scholar
  42. Mareschal L (2008) Effet de la substitution d’essences forestières sur les sols et leur minéralogie. Cas du site expérimental de Breuil (Morvan, France). Doctoral dissertation, Université de Nancy IGoogle Scholar
  43. Mareschal L, Ranger J, Turpault MP (2009) Stoichiometry of a dissolution of a trioctahedral vermiculite at pH 2.7. Geochim Cosmochim Acta 73:307–319CrossRefGoogle Scholar
  44. Marschner H (1991) Mechanism of adaptation of plants to acid soils. Plant Soil 134:1–20Google Scholar
  45. Menyailo OV, Lehmann J, da Silva Cravo M, Zech W (2003) Soil microbial activities in tree based cropping systems and natural forests of the Central Amazon, Brazil. Biol Fertil Soils 38:1–9CrossRefGoogle Scholar
  46. Meunier A (2003) Argiles. Collection Géosciences, GB publisher, Contemporary Publishing International, 427 ppGoogle Scholar
  47. Meunier A (2007) Soil hydroxy-interlayered minerals: a re-interpretation of their crystallochemical properties. Clays Clay Miner 55:380–388CrossRefGoogle Scholar
  48. Montagne D (2006) Impact de la mise en culture et du drainage sur l’évolution récente des sols : cas des luvisols dégradés de l’Yonne. Doctoral dissertation, Université d’OrléansGoogle Scholar
  49. Montagne D, Cornu S, Le Forestier L, Hardy M, Josière O, Caner L, Cousin I (2008) Impact of drainage on soil-forming mechanisms in a french Abeluvisol: input of mineralogical data in mass-balance modelling. Geoderma 145:426–438CrossRefGoogle Scholar
  50. Nordborg F, Olsson S (1999) Changes in soil mineralogy and exchangeable cation pools in stands of Norway spruce planted on former pasture land. Plant Soil 207:219–229CrossRefGoogle Scholar
  51. Nugroho RA, Röling WFM, Laverman AM, Verhoef HA (2006) Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be species specific. Soil Biol Biochem 38:1166–1171CrossRefGoogle Scholar
  52. Nygaard PH, de Wit HA (2004) Effects of elevated soil solution Al concentrations on fine roots in a middle-aged Norway spruce (Picea abies (L.) Karst.) stand. Plant Soil 265:131–140CrossRefGoogle Scholar
  53. Nys C (1981) Modifications des caractéristiques physico-chimiques d’un sol brun acide des Ardennes primaires par la monoculture d’Epicéa commun. Ann Sci For 38:237–258CrossRefGoogle Scholar
  54. Öquist MG, Petrone K, Nilsson M, Klemedtsson L (2007) Nitrification controls N2O production rates in a frozen boreal forest soil. Soil Biol Biochem 39:1809–1811CrossRefGoogle Scholar
  55. Ouimet R (2008) Using compositional change within soil profiles for modelling base cation transport and chemical weathering. Geoderma 145:410–418CrossRefGoogle Scholar
  56. Pai CW, Wang MK, King HB, Chiu CY, Hwong JL (2004) Hydroxy-interlayered minerals of forest soils in A-Li Mountain, Taiwan. Geoderma 123:245–255CrossRefGoogle Scholar
  57. Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at originally similar forest sites. Soil Biol Biochem 31:965–977CrossRefGoogle Scholar
  58. Quideau SA, Chadwick OA, Graham RC, Wood HB (1996) Base cation biogeochemistry and weathering under oak and pine: a controlled long-term experiment. Biogeochemistry 35:377–398CrossRefGoogle Scholar
  59. Ranger J, Andreux F, Berthelin J, Boudot JP, Bréchet C, Buée M, Gerard F, Jaffrain J, Lejon D, Le Tacon F, Moukoumi J, Munier-Lamy, C., Simonsson M, Turpault MP, Vairelles D, Zeller B (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosysteme forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif experimental de Breuil—Morvan). In: INRA, NancyGoogle Scholar
  60. Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314CrossRefGoogle Scholar
  61. Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer, New YorkCrossRefGoogle Scholar
  62. Rich CI (1968) Hydroxy interlayers in expansible layer silicates. Clays Clay Miner 16:15–30CrossRefGoogle Scholar
  63. Righi D, Meunier A (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite. Clays Clay Miner 29:519–530CrossRefGoogle Scholar
  64. Robert M, Tessier D (1974) Méthode de préparation des argiles des sols pour l’études minéralogique. Ann Agron 22:43–93Google Scholar
  65. Robert M, Razzaghe M, Vicente MA, Veneau G (1979) Rôle du facteur biochimique dans l’altération des minéraux silicatés. Sci Sol 2:153–174Google Scholar
  66. Seddoh FK (1973) Altération des roches cristallines du Morvan (granite, granophyres, rhyolites) Etude minéralogique, géochimique et micro-morphologique. Doctoral dissertation, Université de DijonGoogle Scholar
  67. Sicard C, Saint Andre L, Gelhaye D, Ranger J (2006) Effect of fertilisation 975 on biomass and nutrient content of Norway spruce and Douglas-fir plantations at the same site. Tree Struct Funct 20:229–246CrossRefGoogle Scholar
  68. Skeffington RA, Brown KA (1986) The effect of five years acid treatment on leaching, soil chemistry and weathering of a humo-ferric podzol. Water Air Soil Pollut 31:891–900CrossRefGoogle Scholar
  69. Sohet K, Herbauts J, Gruber W (1988) Changes caused by Norway spruce in an ochreous brown earth, assessed by the isoquartz method. J Soil Sci 39:549–561CrossRefGoogle Scholar
  70. Spyridakis DC, Chester G, Wildes SA (1967) Kaolinisation of biotite as a result of coniferous and deciduous seedling. Soil Sci Soc Am J 31:203–210CrossRefGoogle Scholar
  71. Tamura T (1958) Identification of clay minerals from acid soils. J Soil Sci 9:141–147CrossRefGoogle Scholar
  72. Tice KR, Graham RC, Wood HB (1996) Transformations of 2:1 phyllosilicates in 41-year-old soils under oak and pine. Geoderma 70:49–62CrossRefGoogle Scholar
  73. Turpault MP, Bonnaud P, Ficther J, Ranger J, Dambrine E (1996) Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges moutains, France). Eur J Soil Sci 47:545–556CrossRefGoogle Scholar
  74. Turpault MP, Righi D, Uterano C (2008) Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment. Geoderma 147:108–115CrossRefGoogle Scholar
  75. USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Government Printing Office, WashingtonGoogle Scholar
  76. Van Scholl L, Keltjens WG, Hoffland E, Van Breemen N (2005) Effect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicity. For Ecol Manag 215:352–360CrossRefGoogle Scholar
  77. Vries WD, Kragt JF, Breeuwsma A (1987) Using soil maps to predict nitrate leaching with a regional transport model. Verslagen en Mededelingen, Commissie voor Hydrologisch Onderzoek TNO, The Hague, pp 491–498Google Scholar
  78. Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaime S, Ranger J, Dambrine E (2007) Influence of tree species on gross and net N transformations in forest soils. Ann For Sci 64:151–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Louis Mareschal
    • 1
    • 2
  • Marie-Pierre Turpault
    • 1
  • Pascal Bonnaud
    • 1
  • Jacques Ranger
    • 1
  1. 1.Centre INRA de NancyUR INRA “Biogéochimie des Ecosystèmes Forestiers”ChampenouxFrance
  2. 2.CIRADUMR Eco&SolsMontpellierFrance

Personalised recommendations