Skip to main content
Log in

Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

It is well known that inherent characteristics of forest species constitute the main control of litter decomposition. In mixed forest, chemical interactions occurring through precipitation turn mechanisms of litter decomposition very uncertain and difficult to predict. Early-stage leaf litter decomposition of Quercus potosina and Pinus cembroides and their controls were examined based on Ostrofsky’s decomposition mechanisms. From June 2007 to May 2008, litterbags with pure and mixed leaf-litter of Q. potosina and P. cembroides were incubated in situ in monospecific and mixed tree stands, respectively. Sampling was carried out 3, 6, 9, and 12 months after incubation. After 12 months, two phases of decomposition of pure and mixed litter were identified; an early phase with a greater rate of mass loss of the labile litter fraction (k L ; soluble compounds) and a later phase with a lower rate of mass loss of the recalcitrant litter fraction (k R; lignin). The labile fraction lost was observed at three and 6 months of incubation, which coincided with the months of highest rainfall likely triggering a rapid release of soluble carbon compounds from leaf litter. Results also indicate that leaf-litter from Q. potosina had higher concentration of soluble compounds and lower lignin concentration than leaf litter from P. cembroides. Observed facilitative and inhibitory mechanisms for mass loss in Q. potosina and P. cembroides were controlled by interaction between physico-chemical litter characteristics and rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1997) Leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–440

    Article  Google Scholar 

  • Alvarez E, Fernández ML, Torrado V, Fernández MJ (2008) Dynamics of macronutrients during the first stage of litter decomposition from forest species in a temperate area (Galicia, NW Spain). Nutr Cycl Agroecosyst 80:243–256

    Article  Google Scholar 

  • Anaya CA, García-Oliva F, Jaramillo VJ (2007) Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest. Oecologia 150:602–610

    Article  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS 107:1–5

    Article  Google Scholar 

  • Austin AT, Vitousek PM (2000) Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J Ecol 88:129–138

    Article  Google Scholar 

  • Ball BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA (2008) Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. J Ecol 96:303–313

    Article  Google Scholar 

  • Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005) Soil biota can change after exotic plant invasion: Does this effect ecosystem processes? Ecology 86:3007–3017

    Article  Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Academic Press, USA

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Germany

    Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux M, Escudero A, Aallardo A, Kratz W, Madeira M, Mälkönen E, McClaugherty C, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Vi de Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Cardona BA (2007) Hidrogeoquímica de sistemas de flujo, regional, intermedio y local resultado del marco geológico en la mesa central: reacciones, procesos y contaminación. Thesis PhD, UNAM, Instituto de Geofísica, México, DF

  • Cetina-Alcalá VM, García-Moya E, Reyes MR (1985) Análisis estructural de un bosque de pino piñonero de Pinus cembroides Zucc., en La Amapola, S.L.P. In: Flores JE (ed) Primer Simposium Nacional sobre Pinos Piñoneros. Facultad de silvicultura y Manejo de Recursos Renovables. Universidad Autónoma de Nuevo León. Scientific Report, Special number 2, pp 100–109

  • Cornejo FH, Varela A, Wright SJ (1994) Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos 70:183–190

    Article  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardennes P, Bottner P (1998) Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Ganjegunte GK, Condron LM, Clinton PW, Davis MR (2005) Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Bio Fert Soils 41:310–319

    Article  Google Scholar 

  • García E (1988) Modificaciones al sistema de clasificación climática de Köppen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, UNAM, México D.F., p 246

    Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Harmon ME, Nadelhoffer KJ, Blair JM (1999) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson FP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, USA, pp 202–240

  • Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524

    Article  Google Scholar 

  • INEGI (2002) Síntesis de Información Geográfica del Estado de San Luis Potosí. Instituto Nacional de Estadística, Geografía e Informática, México

    Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  Google Scholar 

  • Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004) A multiscale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:254–268

    Article  Google Scholar 

  • Martin A, Gallardo JF, Santa Regina I (1997) Long-term decomposition process of leaf litter from Quercus pyrenaica forests across a rainfall gradient (Spanish central system). Ann For Sci 54:191–202

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Mingzhong Z, Zhu H, Jin J, Shi L, Sha Y (2009) Grass litter decomposition rate and water-holding capacity in dry-hot Valley of Jinshajiang River. Wuhan Univ J Nat Sci 14:92–96

    Article  Google Scholar 

  • Møller J, Miller M, Kjøller A (1999) Fungal–bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol Biochem 31:367–374

    Article  Google Scholar 

  • Murphy KL, Klopatec JM, Klopatec CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–1071

    Article  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems 4:29–48

    Article  Google Scholar 

  • Ostrofsky ML (2007) A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. J N Am Benthol Soc 26:23–27

    Article  Google Scholar 

  • Pataki DE, Oren R, Katul G, Sigmon J (1998) Canopy conductance of Pinus taeda, Liquidambar styracifluan and Quercus phellos under varying atmospheric and soil water condition. Tree Physiol 18:307–315

    Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Diaz JH, Cornelissen C, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Blundo C, Gurvich D, Diaz S, Cuevas E (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159

    Article  Google Scholar 

  • Pérez-Suárez M (2009) Understanding the role of Pinus cembroides and Quercus potosina in water and nutrient dynamics in a semi-arid forest ecosystem of central-northwest Mexico applying the functional matrix approach. PhD Thesis, Instituto Potosino de Investigación Científica y Tecnologica, Mexico

  • Pérez-Suárez M, Arredondo-Moreno JT, Huber-Sannwald E, Vargas-Hernández JJ (2009) Production and quality of senesced and green litter fall in a pine-oak forest in central-northwest Mexico. For Ecol Manag 258:1307–1315

    Article  Google Scholar 

  • Prescott CE, Zabek LM, Staley CL, Kabzems R (2000) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can J Forest Res 30:1742–1750

    Article  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Ed. Limusa. México, DF

  • Santa Regina I, Tarazona T (2001a) Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74:11–28

    Article  Google Scholar 

  • Santa Regina I, Tarazona T (2001b) Nutrient pools to the soil through organic matter and throughfall under a Scots pine plantation in the Sierra de la Demanda, Spain. Eur J Soil Biol 37:125–133

    Article  Google Scholar 

  • SAS Institute Inc. (2002–2003) SAS user’s guide, Version 9.1.3. SAS Institute, Inc., Cary, NC

  • Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 6:831–838

    Article  Google Scholar 

  • Schlesinger WH, Tartowski SL, Schmidt SM (2006) Nutrient cycling within an arid ecosystem. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chihuahuan desert ecosystem. The Jornada Basin Long-Term ecological research site, Oxford, USA, pp 133–149

    Google Scholar 

  • Virzo De Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol Biochem 25:1423–1433

    Article  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  Google Scholar 

  • Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • World Reference Base for Soil Resources WRR, for Soil Resources WRB (2006) A framework for international classification, correlation and communication. FAO, Rome

  • Yan W, Qing-li W, Li-min D, Miao W, Li Z, Bao-qing D (2004) Effect of soil moisture gradient on structure of broad-leaven/Korean pine forest in Changbai Mountain. J Forest Res 15:119–123

    Article  Google Scholar 

  • Zavala CF, García E (1991) Fenología y crecimiento del brote anual de P. cembroides Zucc. de San Luis Potosí, México. BIOTAM 3:5–14

    Google Scholar 

Download references

Acknowledgments

Our gratitude is extended to Griselda Chávez Aguilar for her technical support in the field and to Rebeca Pérez Rodríguez and Juan Pablo Rodas for their technical support in the laboratory. MPS acknowledges to J.J. Vargas-Hernández for his comments to preliminary versions of this paper. MPS also acknowledges to the Mexican Council for Science and Technology the scholarship granted (CONACyT, num. 169737) to complete her PhD studies. This project was supported by a grant to JTAM from CONACYT-SEMARNAT, no. 357and partially by grant no. 23421. EHS thanks SEMARNAT grant 23721 for partial funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlín Pérez-Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Suárez, M., Arredondo-Moreno, J.T. & Huber-Sannwald, E. Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite. Biogeochemistry 108, 245–258 (2012). https://doi.org/10.1007/s10533-011-9594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9594-y

Keywords

Navigation