, Volume 108, Issue 1–3, pp 245–258 | Cite as

Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite

  • Marlín Pérez-Suárez
  • J. Tulio Arredondo-Moreno
  • Elisabeth Huber-Sannwald


It is well known that inherent characteristics of forest species constitute the main control of litter decomposition. In mixed forest, chemical interactions occurring through precipitation turn mechanisms of litter decomposition very uncertain and difficult to predict. Early-stage leaf litter decomposition of Quercus potosina and Pinus cembroides and their controls were examined based on Ostrofsky’s decomposition mechanisms. From June 2007 to May 2008, litterbags with pure and mixed leaf-litter of Q. potosina and P. cembroides were incubated in situ in monospecific and mixed tree stands, respectively. Sampling was carried out 3, 6, 9, and 12 months after incubation. After 12 months, two phases of decomposition of pure and mixed litter were identified; an early phase with a greater rate of mass loss of the labile litter fraction (k L ; soluble compounds) and a later phase with a lower rate of mass loss of the recalcitrant litter fraction (k R; lignin). The labile fraction lost was observed at three and 6 months of incubation, which coincided with the months of highest rainfall likely triggering a rapid release of soluble carbon compounds from leaf litter. Results also indicate that leaf-litter from Q. potosina had higher concentration of soluble compounds and lower lignin concentration than leaf litter from P. cembroides. Observed facilitative and inhibitory mechanisms for mass loss in Q. potosina and P. cembroides were controlled by interaction between physico-chemical litter characteristics and rainfall.


Quercus potosina Pinus cembroides Semiarid forest Litter mixtures Early stage decomposition C:N Lignin:N Mass loss 



Our gratitude is extended to Griselda Chávez Aguilar for her technical support in the field and to Rebeca Pérez Rodríguez and Juan Pablo Rodas for their technical support in the laboratory. MPS acknowledges to J.J. Vargas-Hernández for his comments to preliminary versions of this paper. MPS also acknowledges to the Mexican Council for Science and Technology the scholarship granted (CONACyT, num. 169737) to complete her PhD studies. This project was supported by a grant to JTAM from CONACYT-SEMARNAT, no. 357and partially by grant no. 23421. EHS thanks SEMARNAT grant 23721 for partial funding of this project.


  1. Aerts R (1997) Leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–440CrossRefGoogle Scholar
  2. Alvarez E, Fernández ML, Torrado V, Fernández MJ (2008) Dynamics of macronutrients during the first stage of litter decomposition from forest species in a temperate area (Galicia, NW Spain). Nutr Cycl Agroecosyst 80:243–256CrossRefGoogle Scholar
  3. Anaya CA, García-Oliva F, Jaramillo VJ (2007) Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest. Oecologia 150:602–610CrossRefGoogle Scholar
  4. Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS 107:1–5CrossRefGoogle Scholar
  5. Austin AT, Vitousek PM (2000) Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J Ecol 88:129–138CrossRefGoogle Scholar
  6. Ball BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA (2008) Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. J Ecol 96:303–313CrossRefGoogle Scholar
  7. Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005) Soil biota can change after exotic plant invasion: Does this effect ecosystem processes? Ecology 86:3007–3017CrossRefGoogle Scholar
  8. Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Academic Press, USAGoogle Scholar
  9. Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, GermanyGoogle Scholar
  10. Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux M, Escudero A, Aallardo A, Kratz W, Madeira M, Mälkönen E, McClaugherty C, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Vi de Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159CrossRefGoogle Scholar
  11. Cardona BA (2007) Hidrogeoquímica de sistemas de flujo, regional, intermedio y local resultado del marco geológico en la mesa central: reacciones, procesos y contaminación. Thesis PhD, UNAM, Instituto de Geofísica, México, DFGoogle Scholar
  12. Cetina-Alcalá VM, García-Moya E, Reyes MR (1985) Análisis estructural de un bosque de pino piñonero de Pinus cembroides Zucc., en La Amapola, S.L.P. In: Flores JE (ed) Primer Simposium Nacional sobre Pinos Piñoneros. Facultad de silvicultura y Manejo de Recursos Renovables. Universidad Autónoma de Nuevo León. Scientific Report, Special number 2, pp 100–109Google Scholar
  13. Cornejo FH, Varela A, Wright SJ (1994) Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos 70:183–190CrossRefGoogle Scholar
  14. Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66CrossRefGoogle Scholar
  15. Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardennes P, Bottner P (1998) Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595CrossRefGoogle Scholar
  16. Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161CrossRefGoogle Scholar
  17. Ganjegunte GK, Condron LM, Clinton PW, Davis MR (2005) Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Bio Fert Soils 41:310–319CrossRefGoogle Scholar
  18. García E (1988) Modificaciones al sistema de clasificación climática de Köppen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, UNAM, México D.F., p 246Google Scholar
  19. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246CrossRefGoogle Scholar
  20. Harmon ME, Nadelhoffer KJ, Blair JM (1999) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson FP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, USA, pp 202–240Google Scholar
  21. Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524CrossRefGoogle Scholar
  22. INEGI (2002) Síntesis de Información Geográfica del Estado de San Luis Potosí. Instituto Nacional de Estadística, Geografía e Informática, MéxicoGoogle Scholar
  23. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304CrossRefGoogle Scholar
  24. Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004) A multiscale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:254–268CrossRefGoogle Scholar
  25. Martin A, Gallardo JF, Santa Regina I (1997) Long-term decomposition process of leaf litter from Quercus pyrenaica forests across a rainfall gradient (Spanish central system). Ann For Sci 54:191–202CrossRefGoogle Scholar
  26. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472CrossRefGoogle Scholar
  27. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626CrossRefGoogle Scholar
  28. Mingzhong Z, Zhu H, Jin J, Shi L, Sha Y (2009) Grass litter decomposition rate and water-holding capacity in dry-hot Valley of Jinshajiang River. Wuhan Univ J Nat Sci 14:92–96CrossRefGoogle Scholar
  29. Møller J, Miller M, Kjøller A (1999) Fungal–bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol Biochem 31:367–374CrossRefGoogle Scholar
  30. Murphy KL, Klopatec JM, Klopatec CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–1071CrossRefGoogle Scholar
  31. Neff JC, Asner GP (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems 4:29–48CrossRefGoogle Scholar
  32. Ostrofsky ML (2007) A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. J N Am Benthol Soc 26:23–27CrossRefGoogle Scholar
  33. Pataki DE, Oren R, Katul G, Sigmon J (1998) Canopy conductance of Pinus taeda, Liquidambar styracifluan and Quercus phellos under varying atmospheric and soil water condition. Tree Physiol 18:307–315Google Scholar
  34. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568CrossRefGoogle Scholar
  35. Pérez-Harguindeguy N, Diaz JH, Cornelissen C, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30CrossRefGoogle Scholar
  36. Pérez-Harguindeguy N, Blundo C, Gurvich D, Diaz S, Cuevas E (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159CrossRefGoogle Scholar
  37. Pérez-Suárez M (2009) Understanding the role of Pinus cembroides and Quercus potosina in water and nutrient dynamics in a semi-arid forest ecosystem of central-northwest Mexico applying the functional matrix approach. PhD Thesis, Instituto Potosino de Investigación Científica y Tecnologica, MexicoGoogle Scholar
  38. Pérez-Suárez M, Arredondo-Moreno JT, Huber-Sannwald E, Vargas-Hernández JJ (2009) Production and quality of senesced and green litter fall in a pine-oak forest in central-northwest Mexico. For Ecol Manag 258:1307–1315CrossRefGoogle Scholar
  39. Prescott CE, Zabek LM, Staley CL, Kabzems R (2000) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can J Forest Res 30:1742–1750CrossRefGoogle Scholar
  40. Rzedowski J (1978) Vegetación de México. Ed. Limusa. México, DFGoogle Scholar
  41. Santa Regina I, Tarazona T (2001a) Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74:11–28CrossRefGoogle Scholar
  42. Santa Regina I, Tarazona T (2001b) Nutrient pools to the soil through organic matter and throughfall under a Scots pine plantation in the Sierra de la Demanda, Spain. Eur J Soil Biol 37:125–133CrossRefGoogle Scholar
  43. SAS Institute Inc. (2002–2003) SAS user’s guide, Version 9.1.3. SAS Institute, Inc., Cary, NCGoogle Scholar
  44. Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 6:831–838CrossRefGoogle Scholar
  45. Schlesinger WH, Tartowski SL, Schmidt SM (2006) Nutrient cycling within an arid ecosystem. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and function of a Chihuahuan desert ecosystem. The Jornada Basin Long-Term ecological research site, Oxford, USA, pp 133–149Google Scholar
  46. Virzo De Santo A, Berg B, Rutigliano FA, Alfani A, Fioretto A (1993) Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol Biochem 25:1423–1433CrossRefGoogle Scholar
  47. Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736CrossRefGoogle Scholar
  48. Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642CrossRefGoogle Scholar
  49. World Reference Base for Soil Resources WRR, for Soil Resources WRB (2006) A framework for international classification, correlation and communication. FAO, RomeGoogle Scholar
  50. Yan W, Qing-li W, Li-min D, Miao W, Li Z, Bao-qing D (2004) Effect of soil moisture gradient on structure of broad-leaven/Korean pine forest in Changbai Mountain. J Forest Res 15:119–123CrossRefGoogle Scholar
  51. Zavala CF, García E (1991) Fenología y crecimiento del brote anual de P. cembroides Zucc. de San Luis Potosí, México. BIOTAM 3:5–14Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marlín Pérez-Suárez
    • 1
    • 2
  • J. Tulio Arredondo-Moreno
    • 1
  • Elisabeth Huber-Sannwald
    • 1
  1. 1.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y TecnológicaSan Luís PotosíMexico
  2. 2.Department of Natural Resource Ecology and ManagementIowa State UniversityAmesUSA

Personalised recommendations