, Volume 81, Issue 2, pp 219–238 | Cite as

Assesing nutrient sustainability of forest production for different tree species considering Ca, Mg, K, N and P at Björnstorp Estate, Sweden

  • H. Sverdrup
  • G. Thelin
  • Marta Robles
  • Ingrid Stjernquist
  • J. Sörensen
Original paper


An assessment of nutrient sustainability has been done for stands of European beech, Sycamore maple, European oak, Norway spruce, Larch, Grandis fir and Douglas fir at Björnstorp Estate in southern Sweden. To estimate the nutrient sustainability, mass balance was calculated with respect to Ca, Mg, K, N and P. The release from mineral weathering was calculated using the PROFILE model. The leaching has been estimated from observed soil water concentrations and nutrients removed by harvest from projected production. The results indicate that the planned production is on the limits of sustainability and sometimes in excess of it. The stands will overuse Ca, sometimes also Mg, K and P, if all growth is harvested. Soil acidification is still progessing at Björnstorp Estate, and soil depletion is the result of this. The estimated sustainable yield and the mass balances suggest that the leaching rate is the most uncertain factor for assessing sustainability. Different types of critical loads were investigated, including a new type, based on no excess acidity in the system. The calculations stress the importance of reducing the acid deposition and that nutrient sustainable management must be included in forest management.


Sustainability Forest production Acidification Nutrients Norway spruce European Beech European larch Sycamore maple Grandis fir Douglas fir European oak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aherne J, Sverdrup H, Farrell E, Cummins T (1998) Application of the SAFE model to a Norway spruce stand at Ballyhooly, Ireland. For Ecol Manag 101:331–338CrossRefGoogle Scholar
  2. Akselsson C, Sverdrup H, Holmqvist J (2005) Estimating weathering rates of Swedish forest soils in different scales, using the PROFILE model and affiliated databases. J Sustain For 21:119–131Google Scholar
  3. Alveteg M, Sverdrup H, Warfvinge P (1996) Regional assessment of dynamic aspects of soil acidification in southern Sweden. Water Air Soil Pollut 85:2509–2514CrossRefGoogle Scholar
  4. Alveteg M, Kurz D, Sverdrup H (1998) Integrated assessment of soil chemical status; 1: Integration of existing models and derivation of a regional database for Switzerland. Water Air Soil Pollut 105:1–9CrossRefGoogle Scholar
  5. Ballesta R, Cabrero B, Jiminez R, Sverdrup H (1995) Nivles de alteracion y cargas criticas de suelos sobre diferente materiales originaros de la comunidad de Madrid. Rev Boletin Geologico Minero 165:13–22Google Scholar
  6. Barkman A, Sverdrup H (1996) Critical loads of acidity and nutrient imbalance for forest ecosystems in Skåne. Rep Ecol Environ Eng 1:1–67. Chemical Engineering, Lund UniversityGoogle Scholar
  7. Barkman A, Warfvinge P, Sverdrup H (1995) Regionalization of critical loads under uncertainty. Water Air Soil Pollut 85:2515–2520CrossRefGoogle Scholar
  8. Barkman A, Schlyter P, Lejonklev M, Alveteg M, Warfvinge P, Sverdrup H, Arnström T (1999) Uncertainties in high resolution critical load assessment for forest soils—possibilities and constraints of combining distributed soil modelling and GIS. Environ Geogr Model 3:125–143Google Scholar
  9. Belyazid S, Westling O, Sverdrup H (2006) Modelling changes in soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environ Pollut (in press)Google Scholar
  10. Bergkvist B, Folkesson L (1995) The influence of tree species on acid deposition, proton budgets and elements fluxes in south Swedish forest ecosystems. Ecol Bull 44:90–99Google Scholar
  11. Brocksen R, Adams T, Sverdrup H, Warfvinge P (1990) Terrestrial liming as a tool to mitigate acidification of Woods Lake, NY. In: Zöttl W (ed) Nutrition and forest status. Kluwer Academic Publishers, Water Air Soil Pollut 54:509–527Google Scholar
  12. Fumuto T, Shindo J, Oura N, Sverdrup H (2000) Adapting the PROFILE model to calculate the critical loads for east Asian soils by including volcanic glass weathering and alternative aluminium solubility system. J Water Air Soil Pollut 130:1247–1252CrossRefGoogle Scholar
  13. Hallgren-Larsson E (2001) Övervakning av luftfÖroreningar i Skåne – FÖrsurande ämnen och tungmetaller – Resultat till och med september 2001. IVL Swedish Environmental Research Institute, Report B 1404Google Scholar
  14. Hellsten E (2004) Skogsskötselns uthållighet och skogsmarkens bärkraft vid Christinehof. Rep Ecol Environ Eng 7. Chemical Engineering, Lund UniversityGoogle Scholar
  15. Holmqvist J, Thelin G, Rosengren U, Sternquist I, Wallman P, Sverdrup H (2002) Assessment of sustainability in the Asa Forest Park. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing Forest Ecosystems, vol 5. Kluwer Academic Publishers, pp 381–426Google Scholar
  16. Jönsson U, Rosengren U, Thelin G, Nihlgård B (2003) Acidification induced chemical changes in coniferous forest soils in southern Sweden 1988–1999. Environ Pollut 123:75–83CrossRefGoogle Scholar
  17. Karltun E (1994) Principal geographic variation in the acidification of Swedish forest soils. Water Air Soil Pollut 76:353–362CrossRefGoogle Scholar
  18. Kimmins JP (1997) Forest ecology. A foundation for sustainable management. Prentice Hall, London, 435 ppGoogle Scholar
  19. Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbaume. Parey, HamburgGoogle Scholar
  20. Kurz D, Alveteg M, Sverdrup H (1998) Integrated assessment of soil chemical status; 2: Application of a regionalized model to 622 forested sites in Switzerland. Water Air Soil Pollut 105:12–20CrossRefGoogle Scholar
  21. Langan S, Sverdrup H, Cull M (1996) Calculation of base cation release from the chemical weathering of Scottish soils using the PROFILE model. Water Air Soil Pollut 85:2487–2502Google Scholar
  22. Leuschner C, Hertel D, Muhs A, Schmidt I (1998) Feinwurzel-Bestandesmassen der rotbuche an verschiedenen Standorten innerhalb ihrer ökologischen Amplitude in Nordwest- und Mitteldeutschland. Verh Ges ökologie 28:429–434Google Scholar
  23. Makarov MI, Kiseleva VV (1995) Acidification and nutrient imbalance in forest soils subjected to nitrogen deposition. Water Air Soil Pollut 85:1137–1142CrossRefGoogle Scholar
  24. Mapping Manual (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. 251 pp. UNECE Convention on Long-range transboundary air pollution (LRTAP), Geneva. Mapping Manual 2004
  25. Martinsson L, Alveteg M, Kronnas V, Sverdrup H, Westling O, Warfvinge P (2005) A regional perspective on present and future soil chemistry at 16 Swedish forest sites. Water Air Soil Pollut 4:1–20CrossRefGoogle Scholar
  26. Nihlgård B (1999) Förslag till riktlinjer för bedömning av behovet av mineralkomplettering av normal produktiv skogsmark (Guidelines for estimation of necessity of mineral supplement to normal productive forest soils). Report to the Swedish Environmental Protection Agency, StockholmGoogle Scholar
  27. Persson H, Majdi H (1995) Effects of acid deposition on tree roots in Swedish forest stands. Water Air Soil Pollut 85:1287–1292CrossRefGoogle Scholar
  28. Rosengren U, Stjernquist I (2004) Gå på djupet—Om rotdjup och rotproduktion i olika skogstyper. SUFOR programme annual report 2004. Swedish Agricultural University, Alnarp, SwedenGoogle Scholar
  29. Semenov M, Bashkin V, Sverdrup H (2000) Application of biochemical model PROFILE for assessment of North Asian ecosystem sensitivity to acid deposition. Asian J Energy Environ 1:143–161Google Scholar
  30. Schlyter P, Anderson S (1992) Forest damage in the counties of Scania and Halland, Sweden, with an analysis of the damage development between 1986 and 1991. Report Länsstyrelsen i Kristianstad län, SwedenGoogle Scholar
  31. Stjernquist I, Rosengren U, Sonesson K, Sverdrup H, Thelin G, Nihlgård B (2002) Forest health indicators. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry. Results from a research program in southern Sweden. Managing forest ecosystems, vol 5. Kluwer Academic Publishers, Amsterdam, pp 204–213Google Scholar
  32. Südhaus M (1999) Nutrient demand of Norway spruce and root distribution in mixed species stands versus monocultures. Honours thesis. Department of Ecology, Lund UniversityGoogle Scholar
  33. Sverdrup H (1990) Kinetics of base cation release from chemical weathering of silicate minerals. Lund University Press, Chartwell-Bratt Ltd, London, ISBN 0-86238-247-5, 245 ppGoogle Scholar
  34. Sverdrup H, Rosen K (1998) Long-term base cation mass balances for Swedish forests and the concept of sustainability. For Ecol Manag 10:221–236CrossRefGoogle Scholar
  35. Sverdrup H, Svensson M (2002) Defining sustainability. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry. Results from a research program in southern. Sweden managing forest ecosystems, vol 5. Kluwer Academic Publishers, Amsterdam, pp 21–32Google Scholar
  36. Sverdrup H, Svensson M (2004) Defining the concept of sustainability, a matter of systems analysis. In: Olsson M, Sjöstedt G (eds) Revealing complex structures—challenges for Swedish systems analysis. Kluwer Academic Publishers, pp 122–142Google Scholar
  37. Sverdrup H, Warfvinge P (1988a) Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water Air Soil 38:387–408Google Scholar
  38. Sverdrup H, Warfvinge P (1988b) Assesment of critical loads of acid deposition on forest soils. In: Nilsson J (ed) Critical loads for sulphur and nitrogen. Nordic Council of Ministers and The United Nations Economic Commission for Europe (UN/ECE), Stockholm Nordic Council of Ministers. Miljörapport 15:81–130Google Scholar
  39. Sverdrup H, Warfvinge P (1988c) Chemical weathering of minerals in the Gårdsjön catchment in relation to a model based on laboratory rate coefficients. In: Nilsson J (ed) Critical loads for sulphur and nitrogen. Nordic Council of Ministers and The United Nations Economic Commission for Europe (ECE), Stockholm. Nordic Council of Ministers. Miljörapport 15:131–150Google Scholar
  40. Sverdrup H. Warfvinge P (1993a) The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca+Mg+K)/Al ratio. Rep Ecol Environ Eng 2:1–247. Chemical Engineering, Lund UniversityGoogle Scholar
  41. Sverdrup H, Warfvinge P (1993b) Calculating field weathering rates using a mechanistic geochemical model—PROFILE. J Appl Geochem 8:273–283CrossRefGoogle Scholar
  42. Sverdrup H, Warfvinge P (1995) Estimating field weathering rates using laboratory kinetics. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Washington DC. Rev Mineral 31:485–541Google Scholar
  43. Sverdrup H, de Vries W, Henriksen A (1990) Mapping critical loads. Nordic Council of Ministers, Geneva. Miljörapport 15, Nord 98Google Scholar
  44. Sverdrup H, Warfvinge P, Janicki A, Morgan R, Rabenhorst M, Bowman M (1992) Mapping critical loads and steady state stream chemistry in the state of Maryland. Environ Pollut 77:195–203CrossRefGoogle Scholar
  45. Sverdrup H, Warfvinge W, Blake L, Goulding K (1995) Modeling recent and historic soil data from the Rothamsted Experimental Station, UK, using SAFE. Agric Ecosyst Environ 53:161–177CrossRefGoogle Scholar
  46. Sverdrup H, Warfvinge P, Britt D (1996) Assessing the potential for forest effects due to soil acidification in Maryland. Water Air Soil Pollut 87:245–265CrossRefGoogle Scholar
  47. Sverdrup H, Warfvinge P, Wickman T (1997) Estimating the weathering rate at Gårdsjön using different methods. In: Hultberg H, Skeffington R (eds) Experimental reversal of acid rain effects. The Gårdsjön Project. John Wiley Science, London, pp 19–37Google Scholar
  48. Sverdrup H, Nihlgård B, Svensson M, Thelin G (2002) Principles of sustainable forest management. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry. Results from a research program in southern Sweden Managing Forest Ecosystems. Kluwer Academic Publishers, Amsterdam, pp 33–56Google Scholar
  49. Sverdrup H, Stjernquist I, Thelin G, Holmqvist J, Svensson M (2005a) Application of natural, social, and economical sustainability limitations to forest management, based on Swedish experiences. J Sustain For 21:147–176Google Scholar
  50. Sverdrup H, Martinsson L, Alveteg M, Moldan F, Kronnäs V, Munthe J (2005b) Modeling recovery of Swedish ecosystems from acidification. Ambio 34:25–31Google Scholar
  51. Thelin G, Rosengren-Brinck U, Nihlgård B, Barkman A (1998) Trends in needle and soil chemistry of Norway spruce and Scots pine stands in South Sweden 1985–1994. Environ Pollut 99:149–158CrossRefGoogle Scholar
  52. Thelin G, Sverdrup H, Holmqvist J, Rosengren U, Linden M (2002) Sustainability in spruce and mixed-species stands. In: Sverdrup H, Stjernquist I (eds) Developing principles for sustainable forestry. Results from a research program in southern. Sweden managing forest ecosystems. Kluwer Academic Publishers, Amsterdam, pp 337–354Google Scholar
  53. Warfvinge P, Sverdrup H (1989) Modelling limestone dissolution in soils. Soil Sci Soc Am 53:44–51CrossRefGoogle Scholar
  54. Warfvinge P, Sverdrup H (1992) Calculating critical loads of acid deposition with PROFILE—a steady-state soil chemistry model. Water Air Soil Pollut 63:119–143CrossRefGoogle Scholar
  55. Warfvinge P, Sverdrup H (1995) Critical loads of acidity to Swedish forest soil, methods, data and results. Reports in Environmental Engineering and Ecology 5:1–127. Chemical Engineering, Lund University. Lund, SwedenGoogle Scholar
  56. Warfvinge P, Sverdrup H, Rosen K (1992a). Calculating critical loads for N to forest soils. Nord 41:403–417. Nordic Council of MinistersGoogle Scholar
  57. Warfvinge P, Sverdrup H, Ågren H, Rosen K (1992b) Effekter av luftföroreningar pÅ framtida skogstillväxt. In: Skogspolitiken inför 2000-talet-1990 Års skogspolitiska kommitte, Statens Offentliga Utredningar SOU: 76:377–412Google Scholar
  58. Warfvinge P, Falkengren-Grerup U, Sverdrup H, Andersen B (1993) Modeling long-term cation supply in acidified forest stands. Environ Pollut 80:209–221CrossRefGoogle Scholar
  59. Warfvinge P, Sverdrup H, Alveteg M, Rietz F (1996) Modelling geochemistry and lake pH since glaciation at lake Gårdsjön. Water Air Soil Pollut 85:713–718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • H. Sverdrup
    • 1
  • G. Thelin
    • 1
  • Marta Robles
    • 1
  • Ingrid Stjernquist
    • 2
  • J. Sörensen
    • 3
  1. 1.Department of Chemical EngineeringLund UniversityLundSweden
  2. 2.Institute for Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Forest ManagementGenarpSweden

Personalised recommendations