Advertisement

Biogeochemistry

, Volume 77, Issue 2, pp 157–175 | Cite as

Ponderosa Pine Responses to Elevated CO2and Nitrogen Fertilization

  • D. W. Johnson
  • A. M. Hoylman
  • J. T. Ball
  • R. F. Walker
Article

Abstract

The effects of elevated CO2 (ambient, +175, and +350 μl l−1) and nitrogen fertilization (0, 100, and 200 kg N ha−1 yr−1 as ammonium sulfate) on C and N accumulations in biomass and soils planted with ponderosa pine (Pinus ponderosa Laws) over a 6-year study period are reported. Both nitrogen fertilization and elevated CO2 caused increases in C and N contents of vegetation over the study period. The pattern of responses varied over time. Responses to CO2 decreased in the +175 μl l−1 and increased in the +350 μl l−1 after the first year, whereas responses to N decreased after the first year and became non-significant by year six. Foliar N concentrations were lower and tree C:N ratios were higher with elevated CO2 in the early years, but this was offset by the increases in biomass, resulting in substantial increases in N uptake with elevated CO2. Nitrogen budget estimates showed that the major source of the N for unfertilized trees, with or without elevated CO2, was likely the soil organic N pool. There were no effects of elevated CO2 on soil C, but a significant decrease in soil N and an increase in soil C:N ratio in year six. Nitrogen fertilization had no significant effect on tree C:N ratios, foliar N concentrations, soil C content, soil N content, or soil C:N ratios. There were no significant interactions between CO2 and N treatments, indicating that N fertilization had no effect on responses to CO2 and that CO2 treatments had no effect on responses to N fertilization. These results illustrate the importance of long-term studies involving more than one level of treatment to assess the effects of elevated CO2.

Keywords

Carbon Elevated CO2 Nitrogen Nitrogen fertilization Ponderosa pine Soil Uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, W., Johnson, D.W., Fu, S. 2003Rhizosphere priming effects on decomposition: controls of fertilization, plant species, and phenologySoil Sci. Soc. Am. J.6714181427Google Scholar
  2. Curtis, P.S., Zak, D.R., Pregitzer, K.S., Teeri, J.A. 1994Above- and belowground response of Populus grandidentata to elevated atmospheric CO2N availabilityPlant Soil1654551Google Scholar
  3. Finzi, A.C., DeLucia, E.H., Hamilton, J.G., Richter, D.D., Schlesinger, W.H. 2002The nitrogen budget of a pine forest under free air CO2 enrichmentOecologia132567578CrossRefGoogle Scholar
  4. Finzi, A.C., DeLucia, E.H., Schlesinger, W.H. 2004Canopy N and P dynamics of a southeastern US pine forest under elevated CO2Biogeochemistry69363378CrossRefGoogle Scholar
  5. Johnson, D.W., Ball, J.T., Walker, R.F. 1997Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pinePlant Soil1902940CrossRefGoogle Scholar
  6. Johnson, D.W., Cheng, W., Ball, J.T. 2000aEffects of [CO2] and nitrogen fertilization on soils planted with ponderosa pinePlant Soil22499113Google Scholar
  7. Johnson, D.W., Cheng, W., Ball, J.T. 2000bEffects of CO2N fertilization on decomposition and N immobilization in ponderosa pine litterPlant Soil224115122Google Scholar
  8. Johnson, D.W., Cheng, W., Joslin, J.D., Norby, R.J., Edwards, N.T., Todd, D.E.,Jr. 2004Effects of elevated CO2 on nutrient cycling in a sweetgum plantationBiogeochemistry69379403CrossRefGoogle Scholar
  9. Johnson, D.W., Hungate, B.A., Dijkstra, P.A., Hymus, G., Hinkle, D.R., Stiling, P., Drake, B.G. 2003The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forestEcol. Appl.1313881399Google Scholar
  10. Luo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R., Oren, R., Parton, W.J., Pataki, D., Shaw, R., Zak, D.R., Field, C. 2004Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2Bioscience54731739Google Scholar
  11. National Atmospheric Deposition Program (NRSP-3)/National Trends Network 2004. NADP Program Office. Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820.Google Scholar
  12. Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips, N., Ewers, B.E., Maier, C., Schäfer, K.V.R., McCarthy, H., Hendry, G.E., McNulty, S.G., Katu, G.G. 2001Soil fertility limits carbon sequestration by forest ecosystems in a CO2-rich atmosphereNature411469472CrossRefGoogle Scholar
  13. Richter, D.D., Markewitz, D. 2001Understanding Soil Change: Soil Sustainability Over Millennia, Centuries and DecadesCambridge University PressCambridgeGoogle Scholar
  14. Schimel, J.P., Benett, J. 2004Nitrogen mineralization: Challenges of a changing paradigmEcology85591602Google Scholar
  15. Switzer, G.L., Nelson, L.E. 1972Nutrient accumulation and cycling in loblolly pine (Pinus taeda L.) plantation ecosystems: The first twenty yearsSoil Sci. Soc. Am. Proc.36143147Google Scholar
  16. Tingey, D.T., Johnson, M.G., Phillips, D.L., Johnson, D.W., Ball, J.T. 1996Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pineTree Physiol.16905914Google Scholar
  17. Tingey, D.T., Johnson, M.G., Phillips, D.L., Storm, M.J. 1995Effects of elevated CO2 and nitrogen on ponderosa pine fine roots and associated fungal componentsJ. Biogeogr.22281287Google Scholar
  18. Turner, J. 1981Nutrient cycling in an age sequence of western Washington Douglas-fir standsAnn. Bot.48159169Google Scholar
  19. Velleman, P.F. 1997DataDesk Version 6.0 Statistics GuideData Description Inc.Ithaca, NYGoogle Scholar
  20. Verburg, P.S.J., Cheng, W.X., Johnson, D.W., Schorran, D.E. 2004Nonsymbiotic nitrogen fixation in three-year-old Jeffrey pines and the role of elevated [CO2]Can. J. For. Res.3419791984CrossRefGoogle Scholar
  21. Walker, R.F., Geisinger, D.R., Ball, J.T. 1997Elevated atmospheric CO2 and soil fertility effects on growthmycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soilPlant Soil1952536CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D. W. Johnson
    • 1
  • A. M. Hoylman
    • 2
  • J. T. Ball
    • 3
  • R. F. Walker
    • 1
  1. 1.Natural Resources and Environmental ScienceUniversity of Nevada, RenoRenoUSA
  2. 2.Biology DepartmentWilliam Woods UniversityFultonUSA
  3. 3.Fireball Information TechnologiesRenoUSA

Personalised recommendations