Skip to main content

Advertisement

Log in

Spatial and Temporal Variability in Sediment Denitrification Within an Agriculturally Influenced Reservoir

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO 3 -N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO 3 -N concentration up to a threshold of 0.88 mg NO 3 -N l−1, above which it appeared NO 3 -N was no longer limiting. Denitrification assays were amended seasonally with NO 3 -N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO 3 -N during fall and winter when ambient NO 3 -N was low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFDM:

ash free dry mass

ANOVA:

analysis of variance

APHA:

American Public Health Association

C:

carbon

chl a:

chlorophyll a

CV:

coefficient of variation

DM:

dry mass

DOC:

dissolved organic carbon

Figure:

figure

g:

gram

He:

helium

h:

hour

km:

kilometers

l:

liter

LSMeans:

least-squared means

LSV:

Lake Shelbyville, Illinois

m:

meter

mg:

milligram

ml:

milliliter

mM:

millimolar

N:

nitrogen

N + C:

nitrogen plus carbon

N2:

di-nitrogen gas

N2O:

nitrous oxide

NH4+:

ammonium

NO 3 :

nitrate

O2:

oxygen

SE:

standard error

TDN:

total dissolved nitrogen

TN:

total nitrogen

USEPA:

United States Environmental Protection Agency

USGS:

United Stated Geologic Survey

μg:

microgram

References

  • I. Ahlgren F. Sörensson T. Waara K. Vrede (1994) ArticleTitleNitrogen budget in relation to microbial transformations in lakes Ambio 23 367–377

    Google Scholar 

  • R.B. Alexander R.A. Smith G.E. Schwarz (2000) ArticleTitleEffect of stream channel size on the delivery of nitrogen to the Gulf of Mexico Nature 403 758–761 Occurrence Handle10.1038/35001562 Occurrence Handle10693802

    Article  PubMed  Google Scholar 

  • InstitutionalAuthorName[APHA] American Public Health Association (1995) Standard Methods for the Examination of Water and Waste EditionNumber19 American Public Health Association Washington DC, USA

    Google Scholar 

  • R.M. Baxter (1977) ArticleTitleEnvironmental effects on dams and impoundments Annu. Rev. Ecol. Syst. 8 255–283 Occurrence Handle10.1146/annurev.es.08.110177.001351

    Article  Google Scholar 

  • M.J. Bernot W.K. Dodds W.S. Gardner M.J. McCarthy D. Sobolev J.L. Tank (2003) ArticleTitleComparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry Appl. Environ. Microbiol. 69 5950–5956 Occurrence Handle10.1128/AEM.69.10.5950-5956.2003 Occurrence Handle14532049

    Article  PubMed  Google Scholar 

  • S.R. Carpenter N.F. Caraco D.L. Correll R.W. Howarth A.N. Sharpley V.H. Smith (1998) ArticleTitleNonpoint pollution of surface waters with phosphorous and nitrogen Ecol. Appl. 8 559–568

    Google Scholar 

  • T.M. Cole H.H. Hannan (1990) Dissolved oxygen dynamic B.L. Kimmel F.E. Payne K.W. Thorton (Eds) Reservoir Limnology: Ecological Perspectives John Wiley and Sons, Inc New York 71–107

    Google Scholar 

  • M.B. David L.E. Gentry D.A. Kovacic K.M. Smith (1997) ArticleTitleNitrogen balance in and export from an agricultural watershed J. Environ. Qual. 26 1038–1048

    Google Scholar 

  • M. David L.E. Gentry (2000) ArticleTitleAnthropogenic inputs of nitrogen and phosphorous and riverine export for Illinois, USA J. Environ. Qual. 29 494–508

    Google Scholar 

  • S. Fleischer A. Gustafson A. Joelsson J. Pansar L. Stibe (1994) ArticleTitleNitrogen removal in created ponds Ambio 23 349–357

    Google Scholar 

  • R. Garcia-Ruiz S.N. Pattinson B.A. Whitton (1998a) ArticleTitleDenitrification in river sediments: relationship between process rate and properties of water and sediment Freshwater Biol. 39 467–476 Occurrence Handle10.1046/j.1365-2427.1998.00295.x

    Article  Google Scholar 

  • R. Garcia-Ruiz S.N. Pattinson B.A. Whitton (1998b) ArticleTitleDenitrification and nitrous oxide production in sediments of the Wiskea lowland eutrophic river Sci. Tot. Environ. 210/211 307–320 Occurrence Handle10.1016/S0048-9697(98)00020-5

    Article  Google Scholar 

  • J.E. Garvey E.A. Marschall R.A. Wright (1998) ArticleTitleFrom star charts to stoneflies: detecting relationships in continuous bivariate data Ecology 79 442–447

    Google Scholar 

  • L.E. Gentry M.B. David K.M. Smith-Starks D.A. Kovacic (2000) ArticleTitleNitrogen fertilizer and herbicide transport from tile drained fields J. Environ. Qual. 29 232–240

    Google Scholar 

  • D.A. Goolsby W.A. Battaglin B.T. Aulenbach R.P. Hooper (2001) ArticleTitleNitrogen input to the Gulf of Mexico J. Environ. Qual. 30 329–336 Occurrence Handle11285892

    PubMed  Google Scholar 

  • L.O. Hedin J.C. Fischer Particlevon N.E. Ostrom B.P. Kennedy M.G. Brown G.P. Robertson (1998) ArticleTitleThermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces Ecology 79 684–703

    Google Scholar 

  • R.M. Holmes J.B. Jones SuffixJr. S.G. Fisher N.B. Grimm (1996) ArticleTitleDenitrification in a nitrogen-limited stream ecosystem Biogeochemistry 33 125–146 Occurrence Handle10.1007/BF02181035

    Article  Google Scholar 

  • Illinois Department of Agriculture. 2003. Land Cover of Illinois, Available from http://www.agr.state.il.us/gis/landcover.html (verified 18 Aug. 2003).

  • S.E. Inwood J.L. Tank M.J. Bernot (2005) ArticleTitlePatterns of denitrification associated with land use in 9 midwestern headwater streams J. N. Am. Benthol. Soc. 24 227–245 Occurrence Handle10.1899/04-032.1

    Article  Google Scholar 

  • K.S. Jørgensen (1989) ArticleTitleAnnual pattern of denitrification and nitrate ammonification in estuarine sediment Appl. Environ. Microbiol. 55 1841–1847

    Google Scholar 

  • G. Jossette B. Leporcq N. Sanchez Philippon (1999) ArticleTitleBiogeochemical mass-balances (C, NP, Si) in three large reservoirs of the Seine Basin (France) Biogeochemistry 47 119–146 Occurrence Handle10.1007/BF00994919

    Article  Google Scholar 

  • H.F. Kaspar (1985) ArticleTitleThe denitrification capacity of sediment from a hypereutrophic lake Freshwater Biol. 15 449–453

    Google Scholar 

  • V.J. Kelly (2001) ArticleTitleInfluences of reservoirs on solute transport: a regional-scale approach Hydrol. Processes 15 1227–1249 Occurrence Handle10.1002/hyp.211

    Article  Google Scholar 

  • R.H. Kennedy K.W. Thorton D.E. Ford (1985) Characterization of the reservoir ecosystem D. Gunnisson (Eds) Microbial Processes in Reservoirs Dr. W. Junk Publishers DordrechtThe Netherlands 25–38

    Google Scholar 

  • R.H. Kennedy W.W. Walker (1990) Reservoir nutrient dynamics B.L. Kimmel F.E. Payne K.W. Thorton (Eds) Reservoir Limnology: Ecological Perspectives John Wiley and Sons, Inc. New York 109–131

    Google Scholar 

  • B.L. Kimmel O.T. Lind L.J. Paulson (1990) Reservoir primary production B.L. Kimmel F.E. Payne K.W. Thorton (Eds) Reservoir Limnology: Ecological Perspectives John Wiley and Sons Inc. New York 133–191

    Google Scholar 

  • I. Koike A. Hattori (1978) ArticleTitleDenitrification and ammonia formation in anaerobic coastal sediments Appl. Environ. Microbiol. 35 278–282

    Google Scholar 

  • L.A. Martin P.J. Mulholland J.R. Webster H.M. Valett (2001) ArticleTitleDenitrification potential in sediments of headwater streams in the southern Appalachian Mountains, USA J. N. Am. Benthol. Soc. 20 505–519

    Google Scholar 

  • P.B. McMahon K.F. Dennehy (1999) ArticleTitleN2O emissions from a nitrogen-enriched river Environ. Sci. Technol. 33 21–25 Occurrence Handle10.1021/es980645n

    Article  Google Scholar 

  • A.M. Mitchell D.S. Baldwin (1999) ArticleTitleThe effects of sediment desiccation on the potential for nitrification, denitrification, and methanogenesis in an Australian reservoir Hydrobiologia 392 3–11 Occurrence Handle10.1023/A:1003589805914

    Article  Google Scholar 

  • R.E. Murray R. Knowles (1999) ArticleTitleChloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils Appl. Environ. Microbiol. 65 3487–3492 Occurrence Handle10427039

    PubMed  Google Scholar 

  • S.N. Pattinson R. Garcia-Ruiz B.A. Whitton (1998) ArticleTitleSpatial and seasonal variation in denitrification in the Swale-Ouse systema river continuum Sci. Tot. Environ. 210/211 289–305 Occurrence Handle10.1016/S0048-9697(98)00019-9

    Article  Google Scholar 

  • N.N. Rabalais R.E. Turner W.J. Wiseman SuffixJr. (2002) ArticleTitleGulf of Mexico hypoxiaa.k.a. “the dead zone” Annu. Rev. Ecol. Syst. 33 235–263 Occurrence Handle10.1146/annurev.ecolsys.33.010802.150513

    Article  Google Scholar 

  • W.B. Richardson E.A. Strauss L.A. Bartsch E.M. Monroe J.C. Cavanaugh L. Vingum D.M. Soballe (2004) ArticleTitleDenitrification in the upper Mississippi River: rates, controls, and contribution to nitrate flux Can. J. Fish. Aquat. Sci. 61 1102–1112 Occurrence Handle10.1139/f04-062

    Article  Google Scholar 

  • T.V. Royer J.L. Tank M.B. David (2004) ArticleTitleTransport and fate of nitrate in headwater agricultural streams in Illinois J. Environ. Qual. 33 1296–1304 Occurrence Handle15254111

    PubMed  Google Scholar 

  • J. Rudolph P. Frenzel N. Pfennig (1991) ArticleTitleAcetylene inhibition technique underestimates in situ denitrification rates in intact cores of freshwater sediments FEMS Microbiol. Ecol. 85 101–106 Occurrence Handle10.1016/0378-1097(91)90505-5

    Article  Google Scholar 

  • D.P. Sartory J.U. Grobbelaar (1984) ArticleTitleExtraction of chlorophyll a from freshwater plankton for spectrophotometric analysis Hydrobiologia 114 177–187

    Google Scholar 

  • InstitutionalAuthorNameSAS Institute (1991) SAS/STAT User’s Guide6.04 SAS Institute Cary, North Carolina

    Google Scholar 

  • D.L. Saunders J. Kalff (2001) ArticleTitleNitrogen retention in wetlands, lakes and rivers Hydrobiologia 443 205–212 Occurrence Handle10.1023/A:1017506914063

    Article  Google Scholar 

  • J.L. Schaller T.V. Royer M.B. David J.L. Tank (2004) ArticleTitleDenitrification associated with plants and sediments in an agricultural stream J. N. Am. Benthol. Soc. 23 667–676 Occurrence Handle10.1899/0887-3593(2004)023<0667:DAWPAS>2.0.CO;2

    Article  Google Scholar 

  • Schlesinger W.H.(ed.) 1997. The global cycles of nitrogen and phosphorous. In: Biogeochemistry:An Analysis of Global Change. 2nd ed. Academic Press, San Diego, California 92101, USA, pp. 383–400.

  • S.P. Seitzinger (1988) ArticleTitleDenitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance Limnol. Oceanogr. 33 IssueID4 part 2 702–724

    Google Scholar 

  • S.P. Seitzinger L.P. Nielsen J. Caffrey P.B. Christensen (1993) ArticleTitleDenitrification measurements in aquatic sediments: a comparison of three methods Biogeochemistry 23 147–167 Occurrence Handle10.1007/BF00023750

    Article  Google Scholar 

  • S.P. Seitzinger R.V. Styles E.W. Boyer R.B. Alexander G. Billen R.W. Howarth B. Mayer N. Breeman ParticleVan (2002) ArticleTitleNitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A Biogeochemistry 57 IssueID58 199–237 Occurrence Handle10.1023/A:1015745629794

    Article  Google Scholar 

  • M.S. Smith J.M. Tiedje (1979) ArticleTitlePhases of denitrification following oxygen depletion in soil Soil Biol. Biochem. 11 261–267 Occurrence Handle10.1016/0038-0717(79)90071-3

    Article  Google Scholar 

  • L. Solorzano (1969) ArticleTitleDetermination of ammonia in natural water by the phenolhypochlorite method Limnol. Oceanogr. 14 799–801

    Google Scholar 

  • G. Stanford J.O. Legg S. Dzienia E.C. Simpson SuffixJr. (1975) ArticleTitleDenitrification and associated nitrogen transformations in soils Soil Sci. 120 147–152

    Google Scholar 

  • J.L. Tank W.K. Dodds (2003) ArticleTitleNutrient limitation of epilithic and epixylic biofilms in ten North American streams Freshwater Biol. 48 1031–1049 Occurrence Handle10.1046/j.1365-2427.2003.01067.x

    Article  Google Scholar 

  • Thorton K.W., Kennedy R.H., Carroll J.H., Walker W.W., Gunkel R.C. and Ashby S. 1980. Reservoir sedimentation and water quality – a heuristic model. In: Proceedings of the Symposium on Surface Water Impoundments. June 2–5, Minneapolis, MN, pp. 654–664.

  • J. Tiedje (1982) Denitrification A.L. Page (Eds) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties ASA-SSSA Madison WI, USA 1011–1026

    Google Scholar 

  • D.W. Toetz (1973) Nitrogen budget of the Great Plains impoundments W.C. Ackerman G.F. White E.B. Worthington (Eds) Man Made Lakes: Their Problems and Environmental Effects American Geophysical Union Washington DC 567–571

    Google Scholar 

  • A.R. Townsend R.W. Howarth F.A. Bazzaz M.S. Booth C.C. Cleveland S.K. Collinge A.P. Dobson P.R. Epstein E.A. Holland D.R. Keeney M.A. Mallin C.A. Rogers P. Wayne A.H. Wolfe (2003) ArticleTitleHuman health effects of a changing global nitrogen cycle Front. Ecol. Environ. 1 IssueID5 240–246

    Google Scholar 

  • [USEPA] United Stated Environmental Protection Agency. 1993. Method 300.0, Test Method for the Determination of Inorganic Anions in Water by Ion Chromatography. Environmental Monitoring Systems Laboratory, ORD, USEPA, Cincinnati, Ohio 45268.

  • [USEPA] United Stated Environmental Protection Agency. 1997. Method 445.0 rev1.2, In vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. National Exposure Research Laboratory, ORD, USEPA, Cincinnati, Ohio 45268.

  • [USGS] United States Geological Survey. 2003. Daily Stream Flow Data [Online]. Available from http://www-il.usgs.gov/nwis-w/IL (verified 18 June 2003).

  • P.M. Vitousek J.D. Aber R.W. Howarth G.E. Likens P.A. Matson D.W. Schindler W.H. Schlesinger D.G. Tilman (1997) ArticleTitleHuman alteration of the global nitrogen cycle: sources and consequences Ecol. Appl. 7 737–750

    Google Scholar 

  • Wetzel R.G. (ed.). 2002. Rivers and Lakes-their distribution, origins and forms. In: Limnology:Lake and River Ecosystems. 3rd ed. Academic Press, USA, pp 37–38.

  • Y. Xue D.A. Kovacic M.B. David L.E. Gentry R.L. Mulvaney C.W. Lindau (1999) ArticleTitle In situ measurements of denitrification in constructed wetlands J. Environ. Qual. 28 263–269

    Google Scholar 

  • T. Yoshinari R. Knowles (1976) ArticleTitleAcetylene inhibition of nitrous-oxide reduction by denitrifying bacteria Biochem. Biophys. Res. Comm. 69 705–710 Occurrence Handle10.1016/0006-291X(76)90932-3 Occurrence Handle817722

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Tank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, L.G., Tank, J.L., Royer, T.V. et al. Spatial and Temporal Variability in Sediment Denitrification Within an Agriculturally Influenced Reservoir. Biogeochemistry 76, 85–111 (2005). https://doi.org/10.1007/s10533-005-2199-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-2199-6

Keywords

Navigation