, Volume 72, Issue 1, pp 67–86 | Cite as

Estimation of denitrification potential in a karst aquifer using the 15N and 18O isotopes of NO 3

  • Florian Einsiedl
  • Piotr Maloszewski
  • Willibald Stichler


A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2+ and Cl and concentrations of stable isotope 18O were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of δ15N and δ18O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in δ15N and δ18O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems.


Chemical tracers Denitrification Isotopes karst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., Nadelhoffer, K.J., Steudler, P., Melillo, J.M. 1989Nitrogen saturation in northern forest ecosystemsBioscience39378386Google Scholar
  2. Amberger, A., Schmidt, H.-L. 1996Natürliche Isotopengehalte für Nitrat als Indikatoren für dessen HerkunftGeochim. Cosmochim. Acta5116992705Google Scholar
  3. Aravena, R., Robertson, W.D. 1998Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plumeGround Water36975982Google Scholar
  4. Buyarian water Management Agency 1996. Groundwater Recharge in Bavaria. Heft 5/96, (in German).Google Scholar
  5. Bazemore, D.E., Eshleman, K.N., Hollenbeck, K.J. 1994The role of soil water in storm flow generation in a forested headwater catchment: synthesis of natural tracers and hydrometric evidenceJ. Hydrol.1624775Google Scholar
  6. Biegert, T., Fuchs, G., Heider, J. 1996Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarateEur. J. Biochem.238661668PubMedGoogle Scholar
  7. Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.L. 1990Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of denitrification in a sandy aquiferJ. Hydrol.114413424Google Scholar
  8. Brown, A., McDonnell, J.J., Burns, D.A., Kendall, C. 1999The role of event watera rapid shallow flow componentand catchment size in summer stormflowJ. Hydrol.217171190Google Scholar
  9. Buttle, J.M. 1994Isotope hydrograph separations and rapid delivery of preevent water from drainage basinsProg. Phys. Geogr.181641Google Scholar
  10. Buttle J.M. and McDonald D.J. 2002. Coupled vertical and lateral preferential flow on a forested slope. Water Resour. Res. 38(5): 10.1029/2001 WR000773.Google Scholar
  11. Buttle, J.M., Turcotte, D.S. 1999Runoff processes on a forested slope on the Canadian ShieldNordic Hydrol.30120Google Scholar
  12. Clark, I., Fritz, P. 1997Environmental Isotopes in HydrogeologyLewis PublishersBoca Raton, USA151Google Scholar
  13. Coplen, T.B., Hopple, J.A., Böhlke, J.k., Peiser, H.S., Rieder, S.E., Krouse, H.R., Rosman, K.J.R., Ding, T., Vocke, R.D., Revez, K.M., Lamberty, A., Tayler, P., De Bievre, P. 2002Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial materials and Reagents. Water-Resources Investigations Report 01-4222US Geological SurveyReston, VirginiaGoogle Scholar
  14. Durka, W., Schulze, E.D., Gebauer, B., Voerkelius, S. 1994Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurementsNature372765768Google Scholar
  15. Einsiedl F., Stichler W. and Maloszewski P. 2002. Untersuchung hydrodynamischer Prozesse eines Karstsystems unter Verwendung natürlicher und künstlicher Tracer. In: Herbert D., Merkel B. and Wolkersdorf C.H. (eds.)Workshop “Isotope und Tracer in der Wasserforschung”. Freiberg, pp. 95–102 (in German).Google Scholar
  16. Glaser, St. 1998Der Grundwasserhaushalt in verschiedenen Faziesbereichen des Malms der Südlichen und Mittleren FrankenalbGSF-Bericht 2/98München(in German).Google Scholar
  17. Heaton, T.H.E. 1986Isotope studies of nitrogen pollution in the hydrosphere and atmosphere: a reviewChem. Geol.5987102Google Scholar
  18. Hellmeier, C. 2001Stofftransport in der ungesättigten Zone der landwirtschaftlich genutzten Flächen in Scheyern/Oberbayern (Tertiärhügelland)GSF-Bericht 5/01Munichin German, Ph.D. thesis, LMU. Google Scholar
  19. Hill, A.R., Kemp, W.A., Buttle, J.M., Goodyear, D. 1999Nitrogen chemistry of subsurface storm runoff on forested Canadian Shield hillslopesWater Resour. Res.35811821Google Scholar
  20. Hinton, M.J., Schiff, S.L., English, M.C. 1994Examining the contributions of glacial till water to storm runoff using two- and three component hydrograph seperationsWater Resour. Res.30983993Google Scholar
  21. Hötzl H 1999. Der Karst als Trinkwasserressource. In: Seiler K.-P., Grundwasserschutz im Karst der Südlichen FrankenalbGSF-Bericht 4/99. pp. 99–114 (in German).Google Scholar
  22. Kaiser K., Guggenberg G., Kaupenjohann M. and Zech W. 2002. Refractory organic substances in aggregated forest soils – retention versus translocation. In: Frimmel F.H. Abbt-Braun G. Heumann K.G. Hock B. Lüdemann H.D. and Spiteller M.(eds.)Refractory Organic Substances in the Environment.Google Scholar
  23. Kendall, C. 1998Tracing nitrogen sources and cycling in catchmentsKendall, C.McDonnell, J.J. eds. Isotope Tracers in Catchment HydrologyElsevierAmsterdamGoogle Scholar
  24. Kendall C., Silva S.R., Chang C.C.Y., Burns D.A., Cambell D.H. and Shanley J.B. 1996. Use of the δ18O and δ15N of nitrate in earlier spring runoff in forested chatchments. Isotopes in Water Resources ManagementInternational Atomic Energy Agency, Vol. 1. Viennapp. 167–176.Google Scholar
  25. Kreitler C.W. 1975. Determining the source of nitrate in groundwater by nitrogen isotope studies. Bureau of Economic Geology, Report of Investigation No. 83. University of Texas, Austin, Texas, Austin, p. 57.Google Scholar
  26. Langdsmand, M., Villholth, K.G., Ullum, M., Jensen, K.H. 1999Processes of colloid mobilization and transport in macropours soil monolithsGeoderma933359Google Scholar
  27. Lee, E.S., Krothe, N.C. 2001A four-component mixing model for water in a karst terrain in south-central IndianaUSA. Using solute concentration and stable isotopes as tracersChem. Geol.179129143Google Scholar
  28. Lee, E.S., Krothe, N.C. 2003Delineating the karstic flow system in the upper Lost River drainage basin, south central Indiana: using sulphate and δ34 S \(_{{\rm S}-34({\rm SO}_{4})}\) as tracersAppl. Geochem.18145153Google Scholar
  29. Maloszewski, P., Stichler, W., Zuber, A., Rank, D. 2002Identifying the flow systems in a karstic-porous aquiferthe SchneealpeAustriaby modelling of environmental 18O und 3H isotopesJ. Hydrol.2564859Google Scholar
  30. Maloszewski, P., Zuber, A. 1985Mathematical models for interpreting tracer experimets in fissured rocks with a porous matrixJ. Hydrol.79333358Google Scholar
  31. Mariotti, A., Landreau, A., Simon, B. 198815N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern FranceGeochim. Cosmochim. Acta5218691878Google Scholar
  32. McDonnel, J.J., Owens, I.F., Stewart, M.K. 1991A case study of shallow flow paths in a steep zero-order basinWater Resour. Bull.27679685Google Scholar
  33. Meckenstock, R.U. 1999Fermenative toluene degradation in anaerobic defined syntrophic coculturesFEMS Microbiol. Lett.1776773PubMedGoogle Scholar
  34. Mengis, M., Walther, U., Berasconi, S., Wehrli, B. 2001Limitations of using δ18O for the source identification of nitrate in Agricultural soilsEnviron. Sci. Technol.3518401844PubMedGoogle Scholar
  35. Michel U. 1999. Gesteinsphysikalische Eigenschaften und fazielle Ausbildung der oberjurassischen Massenfazies (Kimmeridge) der Südlichen Frankenalb. In: Seiler K.-P.(eds)Trinkwasserschutz im Karst der Südlichen FrankenalbGSF-Bericht 4/99, München, pp. 48–57 (in German).Google Scholar
  36. Nattelhofer, K.J., Fry, B. 1988Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matterSoil Sci. Soc. Am. J.5216331640Google Scholar
  37. Panno, S.V., Hackley, K.C., Hwang, H.H., Kell, W.R. 2001Determination of the sources of nitrate contamination in karst springs using isotopic and chemical dataChem. Geol.179113128Google Scholar
  38. Pfaff T. 1987. Grundwasserumsatzräume im Karst der Frankenalb. Ph.D. thesis, LMU, München, GSF-Bericht 3/87 (in German).Google Scholar
  39. Rau I. 1999. Untersuchungen zur langfristigen Speicherung von persistenten Schadstoffen in heterogenen porösen Medien mit Umweltracermethoden. Ph.D. thesis, LMU, Munich (in German).Google Scholar
  40. Rice, K.C., Hornberger, G.M. 1998Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested headwater catchmentWater Resour. Res.3417551766Google Scholar
  41. Schmidt-Kaler H. 1989. Geologische Karte 1.25000, Erläuterungen zum Blatt Nr. 7136 Neustadt a. d. Donau.-167 S., München, (Geol. Survey) (in German).Google Scholar
  42. Schroeder, R.A., Setmire, J.G., Densmore, J.N. 1991Use of stabile isotopes, tritiumsoluble salts and redox-sensitive elements to distinguish groundwater from irrigation water in the Salton Sea basinRitter, W.F. eds. Irrigation and DrainageAmerican Society of Civil EngineersNew York524530Google Scholar
  43. Seiler, K.P., Maloszewski, P., Behrens, H. 1989Hydrodynamic dispersion in karstified limestones and dolomites in the Upper Jurassic of the Franconian AlbF.R.G. J. Hydrol.108235247Google Scholar
  44. Stichler W. and Herrmann A. 1983. Application of environmental isotope techniques in water balance studies of small basins. New Approaches in Water Balance Computations IAHS Publication no. 148, pp. 93–112.Google Scholar
  45. Sun, N., Elimelech, M., Sun, Ne-Zheng., Ryan, J. 2001A novel two-dimensional model for colloid transport in a physically and geochemically heterogeneous porous mediaJ. Contam. Hydrol.49173199PubMedGoogle Scholar
  46. Swistock, B.R., DeWalle, D.R., Sharpe, W.E. 1989Sources of acidic storm flow in an Appalachian headwater streamWater Resour. Res.2521392147Google Scholar
  47. Turner, J.V., MacPherson, D.K., Stokes, R.A. 1987The mechanisms of chatchment flow processes using natural variations in deuterium and oxygen-18J. Hydrol.94143162Google Scholar
  48. Uhlenbrook, S., Frey, M., Leibundgut, Ch, Maloszewski, P. 2002Hydrograph separations in a meso-scale mountainous basin at event and seasonal time scalesWater Resour. Res.3831.131.14Google Scholar
  49. Voerkelius S. 1990 Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation; Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. Ph.D. thesis, Tech. Univ., MunichGermany (in German).Google Scholar
  50. Wassenaar, L.I. 1995Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3Appl. Geochem.10391405Google Scholar
  51. Wendland, F., Albert, H., Bach, M., Schmidt, R. 1993Atlas zum Nitratstrom in der Bundesrepublik DeutschlandSpringerBerlin, Heidelbergin GermanGoogle Scholar
  52. Williard K.W.J., DeWalle D.R., Edwards P.J. and Sharpe W.E. 2001. 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J. Hydrol. 174–188. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Florian Einsiedl
    • 1
  • Piotr Maloszewski
    • 1
  • Willibald Stichler
    • 1
  1. 1.Institute for Groundwater EcologyGSF-National Research Center for Environment and HealthNeuherbergGermany

Personalised recommendations