Biodiversity and Conservation

, Volume 27, Issue 9, pp 2329–2361 | Cite as

Fragmentation in calcareous grasslands: species specialization matters

  • Siri Lie Olsen
  • Marianne EvjuEmail author
  • Anders Endrestøl
Original Paper


Habitat fragmentation resulting from anthropogenic land-use change may negatively affect both biodiversity and ecosystem structure and function. However, susceptibility to fragmentation varies between species and may be influenced by for instance specialization, functional traits and trophic level. We examined how total and specialist species richness, species composition and functional trait composition at two trophic levels (vascular plants and sap-feeding hoppers) vary with habitat fragmentation (patch size and connectivity) in dry calcareous grasslands in southeast Norway. We found that fragmentation affected plant and hopper species composition both totally and of habitat specialists, but with a net species loss only for the specialists, indicating greater susceptibility of specialized species. Reductions in patch size and increasing isolation negatively affected plant specialists with different sets of traits, effectively reducing the number of species with trait combinations suitable to persist in small and isolated patches. Fragmentation influenced trait composition of the total hopper community, but not of habitat specialists. A lesser degree of habitat association could explain why hoppers, despite belonging to a higher tropic level, seemed to be less susceptible to fragmentation than plants. Nonetheless, our study shows that habitat fragmentation affects both species richness, species composition and trait composition of plants and hoppers, indicating that fragmentation leads not only to a loss of species, but also alters dominance hierarchies and the functionality of grassland communities.


Calcareous grasslands Functional traits Habitat fragmentation Auchenorrhyncha Vascular plants 



This study was carried out under the projects “Survey and monitoring of red-listed species” (ARKO, funded by the Norwegian Environment Agency), and “Management of biodiversity and ecosystem services in spatially structured landscapes” (funded by the Norwegian Research Council, grant 208434/F40). We are grateful to A. Often, O. Skarpaas, O.E. Stabbetorp and J. Wesenberg for field work contributions and H. Nickel for inputs on hopper generalist and specialist classification, and to two anonymous reviewers for valuable inputs on a previous version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224CrossRefGoogle Scholar
  2. Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333. CrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. CrossRefGoogle Scholar
  4. Biedermann R (2002) Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats. Denisia 4:523–530Google Scholar
  5. Biedermann R, Niedringhaus R (2004) Die Zikaden Deutschlands—Bestimmungstafeln fur alle Arten. WABV Frund, ScheesselGoogle Scholar
  6. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809. CrossRefGoogle Scholar
  7. Brückmann SV, Krauss J, van Achterberg C, Steffan-Dewenter I (2011) The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. J Insect Conserv 15:707–714. CrossRefGoogle Scholar
  8. Bruun HH (2000) Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography 23:641–650. CrossRefGoogle Scholar
  9. Cagnolo L, Valladares G, Salvo A, Cabido M, Zak M (2009) Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits. Conserv Biol 23:1167–1175CrossRefPubMedGoogle Scholar
  10. County Administrator of Oslo and Akershus (2010) Action plan towards invasive species in Oslo and Akershus. Report 2/2010Google Scholar
  11. della Giustina W (2002) Migration in Auchenorrhyncha. Denisia 4:513–522Google Scholar
  12. Denno RF, Roderick GK (1991) Influence of patch size, vegetation texture, and host plant architecture on the diversity, abundance, and life-history styles of sap-feeding herbivores. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 169–196CrossRefGoogle Scholar
  13. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514CrossRefGoogle Scholar
  14. Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805CrossRefGoogle Scholar
  15. Endrestøl A (2014) The genus Recilia Edwards, 1922 (Hemiptera, Cicadellidae) confirmed from Northern Europe. Norw J Entomol 61:37–41Google Scholar
  16. Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258CrossRefGoogle Scholar
  17. Evju M, Stange E (eds) (2016) Når artenes leveområder splittes opp - eksempler fra øyene i indre Oslofjord. Sluttrapport fra strategisk instituttsatsing (SIS) 2011-2015. NINA Temahefte 65Google Scholar
  18. Evju M, Sverdrup-Thygeson A (2016) Spatial configuration matters: a test of the habitat amount hypothesis for plants in calcareous grasslands. Landsc Ecol 31:1891–1902. CrossRefGoogle Scholar
  19. Evju M, Blumentrath S, Skarpaas O, Stabbetorp OE, Sverdrup-Thygeson A (2015) Plant species occurrence in a fragmented landscape: the importance of species traits. Biodiv Conserv 24:547–561. CrossRefGoogle Scholar
  20. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–143CrossRefPubMedGoogle Scholar
  21. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515. CrossRefGoogle Scholar
  22. Fitter AH, Peat HJ (1994) The ecological flora database. J Ecol 82:415–425CrossRefGoogle Scholar
  23. Gederaas L, Moen TL, Skjelseth S, Larsen L-K (eds) (2012) Non-native species in Norway—with the Norwegian Black List 2012. The Norwegian Biodiversity Information Centre, TrondheimGoogle Scholar
  24. Giladi I, May F, Ristow M, Jeltsch F, Ziv Y (2014) Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem. J Biogeogr 41:1055–1069. CrossRefGoogle Scholar
  25. Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodiv Conserv 22:2131–2138CrossRefGoogle Scholar
  26. Haddad NM et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162. CrossRefGoogle Scholar
  28. Henderson RA (2010) Influence of patch size, isolation, and fire history on hopper (Homoptera: Auchenorrhyncha) communities of eight Wisconsin prairie remnants. Wisconsin Department of Natural Resources Research Report 189Google Scholar
  29. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodiv Conserv 13:207–251CrossRefGoogle Scholar
  30. Henriksen S, Hilmo O (eds) (2015) Norwegian Red list for species 2015. The Norwegian Biodiversity Information Centre, TrondheimGoogle Scholar
  31. Higgins SI, Lavorel S, Revilla E (2003) Estimating plant migration rates under habitat loss and fragmentation. Oikos 101:354–366. CrossRefGoogle Scholar
  32. Hooper DU et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. CrossRefGoogle Scholar
  33. Isbell F et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. CrossRefPubMedGoogle Scholar
  34. Jones NT, Germain RM, Grainger TN, Hall AM, Baldwin L, Gilbert B (2015) Dispersal mode mediates the effect of patch size and patch connectivity on metacommunity diversity. J Ecol 103:935–944. CrossRefGoogle Scholar
  35. Kleyer M et al (2008) The LEDA Traitbase: a database of plant life-history traits of North West Europe. J Ecol 96:1266–1274CrossRefGoogle Scholar
  36. Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938. CrossRefGoogle Scholar
  37. Komonen A, Penttilä R, Lindgren M, Hanski I (2000) Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 90:119–126CrossRefGoogle Scholar
  38. Kormann U, Rosch V, Batary P, Tscharntke T, Orci KM, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217. CrossRefGoogle Scholar
  39. Krauss J et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584CrossRefPubMedGoogle Scholar
  41. Kühn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10:363–365CrossRefGoogle Scholar
  42. Kuussaari M et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571CrossRefPubMedGoogle Scholar
  43. Lid J, Lid DT (2005) Norsk flora, 7th edn. Det Norske Samlaget, OsloGoogle Scholar
  44. LIFE (2008) LIFE and Europe’s grasslands: Restoring a forgotten habitat.
  45. Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 35:356–363. CrossRefGoogle Scholar
  46. Lindgaard A, Henriksen S (eds) (2011) Norwegian red list for ecosystems and habitat types 2011. Norwegian Biodiversity Information Centre, TrondheimGoogle Scholar
  47. MacLean SF (1983) Life cycles and the distribution of psyllids (Homoptera) in arctic and subarctic Alaska. Oikos 40:445–451CrossRefGoogle Scholar
  48. Martinson HM, Fagan WF (2014) Trophic disruption: a meta-analysis of how habitat fragmentation affects resource comsumption in terrestrial athropod systems. Ecol Lett 17:1178–1189CrossRefPubMedGoogle Scholar
  49. Matthews TJ, Cottee-Jones HE, Whittaker RJ (2014) Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers Distrib 20:1136–1146CrossRefGoogle Scholar
  50. Maurer K, Durka W, Stöcklin J (2003) Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic Appl Ecol 4:307–316CrossRefGoogle Scholar
  51. Nickel H (2003) The leafhoppers and planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and strategies in a highly diverse group of phytophagous insects. Pensoft, Sofia and MoscowGoogle Scholar
  52. Nickel H, Achtziger R (2005) Do they ever come back? Responses of leafhopper communities to extensification of land use. J Insect Conserv 9:319–333CrossRefGoogle Scholar
  53. Nickel H, Hildebrandt J (2003) Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hemiptera)—a case study from the Elbe flood plains (northern Germany). Agr Ecosyst Environ 98:183–199. CrossRefGoogle Scholar
  54. Nordén J, Penttilä R, Siitonen J, Tompoo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712. CrossRefGoogle Scholar
  55. Norwegian Meteorological Institute (2015) eKlima. Data from weather station 18700 Blindern, Oslo, normal period 1961–1990. Available at eklima.met.noGoogle Scholar
  56. Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534. CrossRefPubMedGoogle Scholar
  57. Öckinger E et al (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979. CrossRefPubMedGoogle Scholar
  58. Oksanen J et al. (2015) vegan: Community ecology package. R package version 2.3-2.
  59. Ossiannilsson F (1978) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark 1: introduction, infraorder Fulgoromorpha. Scandinavian Science Press, KlampenborgGoogle Scholar
  60. Ossiannilsson F (1981) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark 2: the families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Scandinavian Science Press, KlampenborgGoogle Scholar
  61. Ossiannilsson F (1983) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark 3: the family Cicadellidae: Deltocephalinae, catalogue, literature and index. Scandinavian Science Press, KlampenborgGoogle Scholar
  62. Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biol Conserv 144:1619–1629. CrossRefGoogle Scholar
  63. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  64. Rösch V, Tscharntke T, Scherber C, Batáry P (2013) Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J Appl Ecol 50:387–394. CrossRefGoogle Scholar
  65. Rösch V, Tscharntke T, Scherber C, Batáry P (2015) Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 179:209–222. CrossRefPubMedGoogle Scholar
  66. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  67. Roslin T, Várkonyi G, Koponen M, Vikberg V, Nieminen M (2014) Species-area relationships across four trophic levels—decreasing island size truncates food chains. Ecography 37:443–453Google Scholar
  68. Saar L, Takkis K, Partel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers Distrib 18:808–817. CrossRefGoogle Scholar
  69. Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143:1405–1413CrossRefGoogle Scholar
  70. Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRefPubMedGoogle Scholar
  71. Scherber C et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. CrossRefPubMedGoogle Scholar
  72. Schnitzler F-R, Hartley S, Lester PJ (2011) Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecol Entomol 36:241–250CrossRefGoogle Scholar
  73. Söderman G (2007) Taxonomy, distribution, biology and conservation status of Finnish Auchenorrhyncha (Hemiptera: Fulgoromorpha et Cicadomorpha). Finnish Environ 7:1–101Google Scholar
  74. Stewart AJA, Wright AF (1995) A new inexpensive suction apparatus for sampling arthropods in grassland. Ecol Entomol 20:98–102CrossRefGoogle Scholar
  75. Stork NE, Srivastava DS, Eggleton P, Hodda M, Lawson G, Leakey RRB, Watt AD (2017) Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv Biol 31:924–933. CrossRefPubMedGoogle Scholar
  76. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  77. Tscharntke T et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685. CrossRefPubMedGoogle Scholar
  78. Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R, Brown CD, De Frenne P, Verheyen K, Wipf S (2013) Global metaanalysis reveals no net change in local-scale plant biodiversity over time. Proc Nat Acad Sci USA 110:19456–19459CrossRefPubMedGoogle Scholar
  79. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  80. Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landscape Ecol 26:461–472CrossRefGoogle Scholar
  81. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  82. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Siri Lie Olsen
    • 1
  • Marianne Evju
    • 1
    Email author
  • Anders Endrestøl
    • 1
  1. 1.Norwegian Institute for Nature Research (NINA)OsloNorway

Personalised recommendations