Advertisement

Biodiversity and Conservation

, 18:3243 | Cite as

Threat status in butterflies and its ecological correlates: how far can we generalize?

  • Sören Nylin
  • Anders Bergström
Original Paper

Abstract

It would be very useful for conservation biologists to be able to predict threat status from ecological characteristics of species, and past studies have shown promising results. Regarding one important threat indicator taxon, the butterflies, results from a study on Finnish species by Kotiaho et al. (Proc Natl Acad Sci USA 102:1963–1967, 2005), suggested that threatened butterflies on average have narrower niches, more restricted distributions of the larval host plants, poorer dispersal abilities and shorter flight periods. However, this study did not control for phylogenetic relatedness of species. To examine the effects of phylogenetic control, and to see how far it is possible to generalize from specific investigations, we compared the ecological characteristics of threatened and non-threatened butterfly species at two different geographical scales: Sweden and Europe. Our results illustrate the difficulties of generalizing between sites, geographical scales, scoring methods, and phylogenetic versus non-phylogenetic analyses. Controlling for phylogeny is shown to be essential. The most robust result is that threatened species have narrower habitat ranges at the local scale.

Keywords

Extinction Host plants Lepidoptera Niche Phylogeny Scale 

Notes

Acknowledgments

This study was supported by grants from the Swedish Research Council to SN.

References

  1. Anonymous (1987) Tagfalter und ihre Lebensräume. Schweizerischer Bund für Naturschutz, BaselGoogle Scholar
  2. Baytas A (2007) A field guide to the butterflies of Turkey. NTV, IstanbulGoogle Scholar
  3. Bergström A (2005) Oviposition site preferences of the threatened butterfly Parnassium mnemosyne–implications for conservation. J Insect Conserv 9:21–27. doi: 10.1007/s10841-004-3204-4 CrossRefGoogle Scholar
  4. Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292. doi: 10.1016/S0006-3207(01)00193-8 CrossRefGoogle Scholar
  5. Bremer B, Bremer K, Chase MW et al (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  6. Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420–423. doi: 10.1038/nature01795 CrossRefPubMedGoogle Scholar
  7. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279. doi: 10.1086/284267 CrossRefGoogle Scholar
  8. Brunton CFA (1998) The evolution of ultraviolet patterns in European colias butterflies (Lepidoptera, Pieridae): a phylogeny using mitochondrial DNA. Heredity 80:611–616. doi: 10.1046/j.1365-2540.1998.00336.x CrossRefGoogle Scholar
  9. Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc Lond B Biol Sci 275:1441–1448. doi: 10.1098/rspb.2008.0179 CrossRefGoogle Scholar
  10. Conrad K, Woiwod I, Parsons M, Fox R, Warren M (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136Google Scholar
  11. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291. doi: 10.1016/j.biocon.2006.04.020 CrossRefGoogle Scholar
  12. Dennis RLH, Donato B, Sparks TH, Pollard E (2000) Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9:343–359. doi: 10.1023/A:1008924329854 CrossRefGoogle Scholar
  13. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167. doi: 10.1146/annurev.energy.28.050302.105532 CrossRefGoogle Scholar
  14. Ebert G (1993) Die Schmetterlinge Baden-Württembergs. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  15. Eliasson CU, Ryrholm N, Holmer M, Jilg G, Gärdenfors U (2005) Nationalnyckeln till Sveriges flora och fauna. Fjärilar: Dagfjärilar. Hesperiidae-Nymphalidae. Artdatabanken, SLU., UppsalaGoogle Scholar
  16. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  17. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi: 10.1086/284325 CrossRefGoogle Scholar
  18. Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398. doi: 10.1016/j.tree.2004.05.004 CrossRefPubMedGoogle Scholar
  19. Fontaine B, Bouchet P, Van Achterberg K et al (2007) The European Union’s 2010 target: putting rare species in focus. Biol Conserv 139:167–185. doi: 10.1016/j.biocon.2007.06.012 CrossRefGoogle Scholar
  20. Franzen M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J Insect Conserv 11:367–390. doi: 10.1007/s10841-006-9053-6 CrossRefGoogle Scholar
  21. Gaston KJ (1988) Patterns in the local and regional dynamics of moth populations. Oikos 53:49–57. doi: 10.2307/3565662 CrossRefGoogle Scholar
  22. Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proc R Soc Lond B Biol Sci 270:1293–1300. doi: 10.1098/rspb.2002.2303 CrossRefGoogle Scholar
  23. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  24. Higgins LG (1975) The classification of European butterflies. Collins, LondonGoogle Scholar
  25. Higgins LG, Riley ND (1979) A field guide to the butterflies of Britain and Europe. Collins, LondonGoogle Scholar
  26. Hodgson JG (1993) Commonness and rarity in British butterflies. J Appl Ecol 30:407–427. doi: 10.2307/2404182 CrossRefGoogle Scholar
  27. Inkinen P (1994) Distribution and abundance in British noctuid moths revisited. Ann Zool Fenn 31:235–243Google Scholar
  28. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4. doi: 10.1186/1471-2148-6-4 CrossRefPubMedGoogle Scholar
  29. Julliard R, Jiguet F, Couvet D (2004) Common birds facing global changes: what makes a species at risk? Glob Change Biol 10:148–154. doi: 10.1111/j.1365-2486.2003.00723.x CrossRefGoogle Scholar
  30. Kandul NP, Lukhtanov VA, Dantchenko AV et al (2004) Phylogeny of Agrodiaetus Hubner 1822 (Lepidoptera : Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: Kkaryotype diversification and species radiation. Syst Biol 53:278–298. doi: 10.1080/10635150490423692 CrossRefPubMedGoogle Scholar
  31. Komonen A, Grapputo A, Kaitala V, Kotiaho JS, Paivinen J (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105:41–54. doi: 10.1111/j.0030-1299.2004.12958.x CrossRefGoogle Scholar
  32. Kotiaho JS, Kaitala V, Komonen A, Paivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967. doi: 10.1073/pnas.0406718102 CrossRefPubMedGoogle Scholar
  33. Lips KR, Reeve JD, Witters LR (2003) Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17:1078–1088. doi: 10.1046/j.1523-1739.2003.01623.x CrossRefGoogle Scholar
  34. Lips KR, Burrowes PA, Mendelson JR, Parra-Olea G (2005) Amphibian declines in Latin America: widespread population declines, extinctions, and impacts. Biotropica 37:163–165. doi: 10.1111/j.1744-7429.2005.00023.x CrossRefGoogle Scholar
  35. Maes D, Van Dyck H (1999) Dagvlinders in Vlaanderen–Ecologie, verspreiding en behoud. Stichting Leefmilieu, BrusselGoogle Scholar
  36. Mattila N, Kaitala V, Komonen A, Kotiaho JS, Paivinen J (2006) Ecological determinants of distribution decline and risk of extinction in moths. Conserv Biol 20:1161–1168. doi: 10.1111/j.1523-1739.2006.00404.x CrossRefPubMedGoogle Scholar
  37. McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516. doi: 10.1146/annurev.ecolsys.28.1.495 CrossRefGoogle Scholar
  38. Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470. doi: 10.1073/pnas.091093698 CrossRefPubMedGoogle Scholar
  39. Nystrom P, Hansson J, Mansson J, Sundstedt M, Reslow C, Brostrom A (2007) A documented amphibian decline over 40 years: possible causes and implications for species recovery. Biol Conserv 138:399–411. doi: 10.1016/j.biocon.2007.05.007 CrossRefGoogle Scholar
  40. Pe’er G, Settele J (2008) Butterflies in and for conservation: trends and prospects. Isr J Ecol Evol 54:7–17. doi: 10.1560/IJEE.54.1.7 CrossRefGoogle Scholar
  41. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci 267:1947–1952. doi: 10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  42. Quinn RM, Gaston KJ, Blackburn TM, Eversham BC (1997a) Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecol Entomol 22:453–461. doi: 10.1046/j.1365-2311.1997.00090.x CrossRefGoogle Scholar
  43. Quinn RM, Gaston KJ, Roy DB (1997b) Coincidence between consumer and host occurrence: macrolepidoptera in Britain. Ecol Entomol 22:197–208. doi: 10.1046/j.1365-2311.1997.00050.x CrossRefGoogle Scholar
  44. Quinn RM, Gaston KJ, Roy DB (1998) Coincidence in the distributions of butterflies and their foodplants. Ecography 21:279–288. doi: 10.1111/j.1600-0587.1998.tb00565.x CrossRefGoogle Scholar
  45. Russell GJ, Brooks TM, McKinney MM, Anderson CG (1998) Present and future taxonomic selectivity in bird and mammal extinctions. Conserv Biol 12:1365–1376. doi: 10.1046/j.1523-1739.1998.96332.x CrossRefGoogle Scholar
  46. Shreeve TG, Dennis RHL, Roy DB, Moss D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161. doi: 10.1023/A:1017556113534 CrossRefGoogle Scholar
  47. Simonsen TJ (2005) Boloria phylogeny (Lepidoptera : Nymphalidae): tentatively reconstructed on the basis of male and female genitalic morphology. Syst Entomol 30:653–665. doi: 10.1111/j.1365-3113.2005.00292.x CrossRefGoogle Scholar
  48. Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer, SunderlandGoogle Scholar
  49. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell, Oxford, pp 149–197Google Scholar
  50. Thomas JA (1995) The conservation of declining butterfly populations in Britain and Europe: priorities, problems and successes. Biol J Linn Soc Lond 56:55–72. doi: 10.1111/j.1095-8312.1995.tb01120.x CrossRefGoogle Scholar
  51. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc B 360:339–357. doi: 10.1098/rstb.2004.1585 CrossRefGoogle Scholar
  52. Thomas JA, Bourn NAD, Clarke RT et al (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B Biol Sci 268:1791–1796. doi: 10.1098/rspb.2001.1693 CrossRefGoogle Scholar
  53. Thomas CD, Cameron A, Green RE et al (2004a) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 CrossRefPubMedGoogle Scholar
  54. Thomas JA, Telfer MG, Roy DB et al (2004b) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi: 10.1126/science.1095046 CrossRefPubMedGoogle Scholar
  55. Tolman T, Lewington R (1997) Collins field guide: Butterflies of Britain and Europe. HarperCollinsPublishers Ltd, LondonGoogle Scholar
  56. Tuzov VK (ed) (1997) Guide to the butterflies of Russia and adjacent territories. Vol1: Hesperiidae, Papilonidae, Pieridae, Satyridae. Pensoft, SofiaGoogle Scholar
  57. van Swaay C, Warren MS (1999) Red data book of European butterflies (Rhopalocera). Council of Europe, StrasbourgGoogle Scholar
  58. van Swaay C, Warren M, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209CrossRefGoogle Scholar
  59. Wahlberg N, Nylin S (2003) Morphology versus molecules: resolution of the positions of Nymphalis, Polygonia and related genera. Cladistics 19:213–223. doi: 10.1111/j.1096-0031.2003.tb00364.x CrossRefGoogle Scholar
  60. Wahlberg N, Zimmermann M (2000) Pattern of phylogenetic relationships among members of the tribe Melitaeini (Lepidoptera : Nymphalidae) inferred from mitochondrial DNA sequences. Cladistics 16:347–363. doi: 10.1111/j.1096-0031.2000.tb00355.x CrossRefGoogle Scholar
  61. Weingartner E, Wahlberg N, Nylin S (2006) Speciation in Pararge (Satyrinae : Nymphalidae) butterflies–North Africa is the source of ancestral populations of all Pararge species. Syst Entomol 31:621–632CrossRefGoogle Scholar
  62. Zimmermann M, Wahlberg N, Descimon H (2000) Phylogeny of Euphydryas checkerspot butterflies (Lepidoptera : Nymphalidae) based on mitochondrial DNA sequence data. Ann Entomol Soc Am 93:347–355CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.County Administrative Board of Västra GötalandBroddetorpSweden

Personalised recommendations