Skip to main content

Advertisement

Log in

Understanding the role of DNA methylation in successful biological invasions: a review

  • Review
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions provide a unique opportunity to investigate rapid adaptation and evolution as the introduced taxa adapt to biogeographic contexts or habitats in which they have not evolved. The capacity of populations to evolve is generally thought to be constrained by their existing heritable genetic variation, which is usually associated with variation in genomic DNA nucleotide sequences. However, there is increasing acceptance that a range of mechanisms—collectively termed ‘epigenetics’ can alter gene function and affect ecologically important traits. Epigenetic processes may mediate adaptive phenotypic plasticity and provide heritable variation on a finer timescale than DNA sequence-based mutations. This review focuses on DNA methylation, a well-studied epigenetic mechanism known to be associated with biological adaptation to environmental stress. We explore the role of DNA methylation in characterising the adaptive potential of invasive species. We also provide an overview of studies focused on DNA methylation and invasive species to date, and identify knowledge gaps and potential ways to advance understanding of epigenetic-based adaptation. A summary of the literature suggests that DNA methylation could play a key role in the success of invasive species. Introduced populations with reduced genetic diversity often display increased DNA methylation variation in comparison with native populations, which could create phenotypic diversity when it is most required. Recent data show that DNA methylation could contribute to adaptation through both phenotypic plasticity and heritable variation, particularly through clonal reproduction. From a methodological perspective, recent advances in molecular techniques provide an exciting opportunity to explore the functional relevance of DNA methylation to successful biological invasions. Gaining a greater understanding of the adaptive and evolutionary processes that contribute to invasion success is critical for preventing and managing the future introduction, establishment and spread of invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure adapted from Bossdorf et al. (2008) and Richards et al. (2017)

Similar content being viewed by others

References

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    Article  CAS  Google Scholar 

  • Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016) Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00473

    Article  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Ardura A, Zaiko A, Morán P, Planes S, Garcia-Vazquez E (2017) Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep. https://doi.org/10.1038/srep42193

    Article  PubMed  PubMed Central  Google Scholar 

  • Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Vanden Bussche J, Vanhaecke L, Janssen CR, De Schamphelaere KAC (2015) Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol Chem 34:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Stebbins G (ed) The genetics of colonizing species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bossdorf O, Arcuri D, Richards CL, Pigliucci M (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553

    Article  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S (2013) Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics 8:979–989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheishvili D, Petropoulos S, Christiansen S, Szyf M (2017) Targeted DNA methylation analysis methods. In: Stefanska B, MacEwan DJ (eds) Epigenetics and gene expression in cancer, inflammatory and immune diseases. Springer, New York, pp 33–50

    Chapter  Google Scholar 

  • Chwedorzewska K, Bednarek P (2012) Genetic and epigenetic variation in a cosmopolitan grass Poa annua from Antarctic and Polish populations. Pol Polar Res 33:63–80

    Article  Google Scholar 

  • Civelek M, Lusis AJ (2013) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Article  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford K, Whitney K (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Dai T-M, Lü Z-C, Liu W-X, Wan F-H, Hong X-Y (2017) The homology gene BtDnmt1 is essential for temperature tolerance in invasive Bemisia tabaci Mediterranean cryptic species. Sci Rep. https://doi.org/10.1038/s41698-017-03373-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  PubMed  CAS  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 178:E18–E36

    Article  PubMed  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  PubMed  CAS  Google Scholar 

  • Dixon GB, Bay LK, Matz MV (2014) Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genom 15:1109

    Google Scholar 

  • Dixon G, Bay LK, Matz MV (2016) Evolutionary consequences of DNA methylation in a basal metazoan. Mol Biol Evol 33:2285–2293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douhovnikoff V, Dodd RS (2015) Epigenetics: a potential mechanism for clonal plant success. Plant Ecol 216:227–233

    Article  Google Scholar 

  • Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Casale FP, Drewe P, Kahles A, Jean G, Vilhjálmsson B (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4:e05255

    Article  PubMed  PubMed Central  Google Scholar 

  • Duckworth RA (2013) Epigenetic inheritance systems act as a bridge between ecological and evolutionary timescales. Behav Ecol 24:327–328

    Article  Google Scholar 

  • Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72

    Article  Google Scholar 

  • Flores KB, Wolschin F, Amdam GV (2013) The role of methylation of DNA in environmental adaptation. Integr Comp Biol 53:359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao L, Geng Y, Li BO, Chen J, Yang JI (2010) Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant, Cell Environ 33:1820–1827

    Article  CAS  Google Scholar 

  • Geng Y-P, Pan X-Y, Xu C-Y, Zhang W-J, Li B, Chen J-K, Lu B-R, Song Z-P (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256

    Article  Google Scholar 

  • Geoghegan JL, Spencer HG (2012) Population-epigenetic models of selection. Theor Popul Biol 81:232–242

    Article  PubMed  Google Scholar 

  • Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA (2007) Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 61:5R–10R

    Article  PubMed  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526–532

    Article  PubMed  Google Scholar 

  • Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8:1066–1074

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21:2602–2616

    Article  PubMed  CAS  Google Scholar 

  • Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O (2016) A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165:88–99

    Article  PubMed  CAS  Google Scholar 

  • Houri-Ze’evi L, Rechavi O (2017) A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet 33:46–57

    Article  CAS  Google Scholar 

  • Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A (2017) Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol. https://doi.org/10.1111/mec.14382

    Article  PubMed  Google Scholar 

  • Hufbauer RA, Facon B, Ravigne V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5:89–101

    Article  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (2008) Soft inheritance: challenging the modern synthesis. Genet Mol Biol 31:389–395

    Article  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T (1995) The adaptive advantage of phenotypic memory in changing environments. Philos Trans R Soc Lond B Biol Sci 350:133–141

    Article  PubMed  CAS  Google Scholar 

  • Jurkowski TP, Ravichandran M, Stepper P (2015) Synthetic epigenetics—towards intelligent control of epigenetic states and cell identity. Clin Epigenet 7:18

    Article  CAS  Google Scholar 

  • Klironomos FD, Berg J, Collins S (2013) How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays 35:571–578

    Article  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, Pogribny I (2003) Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation? Mutat Res 529:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lachmann M, Jablonka E (1996) The inheritance of phenotypes: an adaptation to fluctuating environments. J Theor Biol 181:1–9

    Article  PubMed  CAS  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  PubMed  CAS  Google Scholar 

  • Laufer BI, Singh SM (2015) Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenet Chromatin 8:34

    Article  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Lee CE, Remfert JL, Chang Y-M (2007) Response to selection and evolvability of invasive populations. Genetica 129:179–192

    Article  PubMed  Google Scholar 

  • Lenz M, da Gama BAP, Gerner NV, Gobin J, Gröner F, Harry A, Jenkins SR, Kraufvelin P, Mummelthei C, Sareyka J (2011) Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. Environ Res 111:943–952

    Article  PubMed  CAS  Google Scholar 

  • Liebl AL, Martin LB (2012) Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc R Soc B 1746:4375–4381

    Article  Google Scholar 

  • Liebl AL, Martin LB (2013) Stress hormone receptors change as range expansion progresses in house sparrows. Biol Lett 9:20130181

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebl AL, Schrey AW, Richards CL, Martin LB (2013) Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol 53:351–358

    Article  PubMed  CAS  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 213:3548–3558

    Article  PubMed  CAS  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Gland

    Google Scholar 

  • Massicotte R, Angers B (2012) General-purpose genotype or how epigenetics extend the flexibility of a genotype. Genet Res Int 2012:317175

    PubMed  Google Scholar 

  • Massicotte R, Whitelaw E, Angers B (2011) DNA methylation: a source of random variation in natural populations. Epigenetics 6:421–427

    Article  PubMed  CAS  Google Scholar 

  • Metzger DC, Schulte PM (2016) Epigenomics in marine fishes. Mar Genomics 30:43–54

    Article  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Molina-Montenegro MA, Penuelas J, Munné-Bosch S, Sardans J (2012) Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol Invasions 14:21–33

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16:1488–1500

    Article  PubMed  Google Scholar 

  • Oppold A, Kreß A, Bussche JV, Diogo JB, Kuch U, Oehlmann J, Vandegehuchte MB, Müller R (2015) Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus. Ecotoxicol Environ Saf 122:45–53

    Article  PubMed  CAS  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS ONE 7:e41143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pál C, Miklós I (1999) Epigenetic inheritance, genetic assimilation and speciation. J Theor Biol 200:19–37

    Article  PubMed  Google Scholar 

  • Pérez JE, Nirchio M, Alfonsi C, Muñoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invasions 8:1115–1121

    Article  Google Scholar 

  • Plongthongkum N, Diep DH, Zhang K (2014) Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 15:647

    Article  PubMed  CAS  Google Scholar 

  • Popova OV, Dinh HQ, Aufsatz W, Jonak C (2013) The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant 6:396–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  PubMed  CAS  Google Scholar 

  • Pu C, Zhan A (2017) Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions 19:2015–2028

    Article  Google Scholar 

  • Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87:5–15

    Article  PubMed  CAS  Google Scholar 

  • Putnam HM, Davidson JM, Gates RD (2016) Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 9:1165–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–668

    Article  PubMed  CAS  Google Scholar 

  • Rechavi O, Lev I (2017) Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Curr Biol 27:R720–R730

    Article  PubMed  CAS  Google Scholar 

  • Remy J-J (2010) Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr Biol 20:R877–R878

    Article  PubMed  CAS  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colome-Tatche M, Durka W, Engelhardt J, Gaspar B, Gogol-Doring A (2017) Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett 20(12):1576–1590

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Rose NH, Seneca FO, Palumbi SR (2016) Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol Evol 8:243–252

    Article  CAS  Google Scholar 

  • Rosner A, Moiseeva E, Rinkevich Y, Lapidot Z, Rinkevich B (2009) Vasa and the germ line lineage in a colonial urochordate. Dev Biol 331:113–128

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Handley L-JL, Schönrogge K, Poland R, Purse B (2011) Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? Biocontrol 56:451–468

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Schrey AW, Grispo M, Awad M, Cook M, McCoy ED, Mushinsky H, Albayrak T, Bensch S, Burke T, Butler L (2011) Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol Ecol 20:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Schrey AW, Coon CAC, Grispo MT, Awad M, Imboma T, McCoy ED, Mushinsky HR, Richards CL, Martin LB (2012) Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res Int 2012:979751

    PubMed  PubMed Central  Google Scholar 

  • Schrey AW, Alvarez M, Foust CM, Kilvitis HJ, Lee JD, Liebl AL, Martin LB, Richards CL, Robertson M (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53:340–350

    Article  PubMed  Google Scholar 

  • Serafini L, Hann JB, Kültz D, Tomanek L (2011) The proteomic response of sea squirts (genus Ciona) to acute heat stress: a global perspective on the thermal stability of proteins. Comp Biochem Physiol Part D Genomics Proteomics 6:322–334

    Article  PubMed  CAS  Google Scholar 

  • Smith KF, Stefaniak L, Saito Y, Gemmill CE, Cary SC, Fidler AE (2012a) Increased inter-colony fusion rates are associated with reduced COI haplotype diversity in an invasive colonial ascidian Didemnum vexillum. PLoS ONE 7:e30473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith KF, Thia J, Gemmill CE, Cary SC, Fidler AE (2012b) Barcoding of the cytochrome oxidase I (COI) indicates a recent introduction of Ciona savignyi into New Zealand and provides a rapid method for Ciona species discrimination. Aquat Invasions 7:305–313

    Article  Google Scholar 

  • Song Y-B, Yu F-H, Keser LH, Dawson W, Fischer M, Dong M, van Kleunen M (2013) United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171:317–327

    Article  PubMed  Google Scholar 

  • Spens AE, Douhovnikoff V (2016) Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol Invasions 18:2457–2462

    Article  Google Scholar 

  • Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24:2241–2252

    Article  PubMed  CAS  Google Scholar 

  • Stuwe E, Tóth KF, Aravin AA (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev 28:423–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trucchi E, Mazzarella AB, Gilfillan GD, Romero ML, Schönswetter P, Paun O (2016) BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol 25:1697–1713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953

    Article  PubMed  CAS  Google Scholar 

  • Vandegehuchte MB, Vandenbrouck T, De Coninck D, De Coen WM, Janssen CR (2010) Gene transcription and higher-level effects of multigenerational Zn exposure in Daphnia magna. Chemosphere 80:1014–1020

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven KJF, Preite V (2014) Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655

    Article  PubMed  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Vitousek PM, Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Wilschut RA, Oplaat C, Snoek LB, Kirschner J, Verhoeven KJF (2016) Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage. Mol Ecol 25:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE 6:e14806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang YY, Parepa M, Fischer M, Bossdorf O (2016) Epigenetics of colonizing species? A study on Japanese knotweed in Central Europe. In: Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the Baker and Stebbins legacy. Wiley, Chichester, pp 328–340

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marsden Fund of the Royal Society of New Zealand (CAW1401). We would also like to thank three reviewers and the editor for their comments as they have greatly improved this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Hawes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawes, N.A., Fidler, A.E., Tremblay, L.A. et al. Understanding the role of DNA methylation in successful biological invasions: a review. Biol Invasions 20, 2285–2300 (2018). https://doi.org/10.1007/s10530-018-1703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1703-6

Keywords

Navigation