Biological Invasions

, Volume 20, Issue 3, pp 653–664 | Cite as

Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus

  • Nildimar A. Honório
  • María C. Carrasquilla
  • Irka E. Bargielowski
  • Naoya Nishimura
  • Tom Swan
  • L. Philip Lounibos
Original Paper


Rapid displacements of resident Aedes aegypti by invasions of Aedes albopictus have been documented in the southeastern United States and Bermuda. Interspecific mating has been detected in nature between these species and proposed as a likely mechanism for these displacements by means of asymmetric reproductive interference, or satyrization. However, rapid displacements of A. aegypti have not been detected in most localities where these two invasive species are known to co-occur. Aedes albopictus invaded the United States and Brazil at approximately the same time, in the mid-1980s, but the origins of the invading strains are known to be different. Here we tested the hypothesis, in standardized cage environments, that A. albopictus males from Brazil are less capable of satyrizing A. aegypti females than A. albopictus males from the United States. Using strains of A. aegypti and A. albopictus from the United States of known susceptibility to and capacity for interspecific mating, we demonstrate that A. albopictus colonized from collections in the Brazilian cities of Rio de Janeiro and Manaus were relatively unsuccessful in inseminating virgin female A. aegypti from Key West Florida compared to A. albopictus from peninsular Florida. We suggest that the low satyrization potential of Brazilian A. albopictus males may contribute to the lack of documented competitive displacements of A. aegypti in that country.


Satyrization Male origin A. aegypti A. albopictus 



We thank Ricardo Lourenço-de-Oliveira and Daniel Cardoso Portela Câmara for the valuable comments in the original postdoctoral Project. We also thank Márcia Gonçalves de Castro, Célio Pinel, Ademir Martins and Ricardo Lourenço-de-Oliveira for help with mosquito sampling in the field. We thank James Newman for his help with Fig. 1. This study is supported by CNPq—Science without Borders Program (Grant 206402/2014), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ (E-26/102.241/2013), and NIH Grant R21 AI 095780.

Supplementary material

10530_2017_1565_MOESM1_ESM.docx (246 kb)
Supplementary material 1 (DOCX 245 kb)


  1. Bargielowski IE, Lounibos LP (2014) Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus. Evol Ecol 28:193–203. doi: 10.1007/s10682-013-9669-4 CrossRefPubMedGoogle Scholar
  2. Bargielowski IE, Lounibos LP (2016) Satyrization and satyrization-resistance in competitive displacements of invasive mosquito species. Ins Sci 23:162–174. doi: 10.1111/1744-7917.12291 CrossRefGoogle Scholar
  3. Bargielowski IE, Lounibos LP, Carrasquilla MC (2013) Evolution of resistance to satyrization: evidence of reproductive character displacement in populations of invasive dengue vectors. Proc Natl Acad Sci 110:2888–2892. doi: 10.1073/pnas.1219599110 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bargielowski IE, Lounibos LP, Shin D, Smartt CT, Carrasquilla MC, Henry A, Navarro JC, Paupy C, Dennett JA (2015) Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Infect Genet Evol 36:456–461. doi: 10.1016/j.meegid.2015.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrera R (1996) Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecol Entomol 21:117–127. doi: 10.1111/j.1365-2311.1996.tb01178.x CrossRefGoogle Scholar
  6. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoo Dis 7:76–85. doi: 10.1089/vbz.2006.0562 CrossRefGoogle Scholar
  7. Birungi J, Mustermann LE (2002) Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and the United States. Ann Entomol Soc Am 95:125–132CrossRefGoogle Scholar
  8. Braks MAH, Honório NA, Lourenço-de-Oliveira R, Juliano SA, Lounibos LP (2003) Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol 40:785–794. doi: 10.1603/0022-2585-40.6.785 CrossRefPubMedGoogle Scholar
  9. Braks MAH, Honório NA, Lounibos LP, Lourenço-de-Oliveira R, Juliano SA (2004) Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97:130–139CrossRefGoogle Scholar
  10. Camara DCP, Codeço CT, Juliano SA, Lounibos LP, Riback TIS, Pereira GR, Honório NA (2016) Seasonal differences in density but similar competitive impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS ONE 11(6):e0157120. doi: 10.1371/journal.pone.0157120 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carrasquilla MC, Lounibos LP (2015) Satyrization without evidence of successful insemination from interspecific mating between invasive mosquitoes. Biol Lett. doi: 10.1098/rsbl.2015.0527 PubMedPubMedCentralGoogle Scholar
  12. Carvalho RG, Lourenço-de-Oliveira R, Braga IA (2014) Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Osw Cruz 106:787–796. doi: 10.1590/0074-0276140304 CrossRefGoogle Scholar
  13. Christophers SR (1960) Aedes aegypti (L.) the yellow fever mosquito. Its life history, bionomics and structure. Cambridge University Press, LondonGoogle Scholar
  14. Consoli R, Lourenço-de-Oliveira R (1994) Principais mosquitos de importância Sanitária no Brasil. In Fiocruz (ed.), Rio de Janeiro, pp 225Google Scholar
  15. Costa ACC, Codeço CT, Honório NA, Pereira GR, Pinheiro CFN, Nobre AA (2015) Surveillance of dengue vectors using spatio-temporal Bayesian modeling. BMC Med Inform Decis Making 15:93. doi: 10.1186/s12911-015-0219-6 CrossRefGoogle Scholar
  16. Daugherty MP, Alto BW, Juliano SA (2000) Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 37:364–372CrossRefPubMedPubMedCentralGoogle Scholar
  17. DeBach P (1966) The competitive displacement and coexistence principles. Ann Rev Entomol 11:183–212CrossRefGoogle Scholar
  18. Fé NF, Barbosa MGV, Alecrim WD, Guerra MVF (2003) Registro da ocorrência de Aedes albopictus em área urbana do município de Manaus, Amazonas. Rev Saúde Pública 37:674–675. doi: 10.1590/S0034-89102003000500020 CrossRefPubMedGoogle Scholar
  19. Forattini OP (1986) Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev Saúde Pública 20:244–245. doi: 10.1590/S0034-89101986000300009 CrossRefPubMedGoogle Scholar
  20. Gao Y, Reitz SR (2017) Emerging themes in our understanding of species displacement. Annu Rev Entomol 62:165–183. doi: 10.1146/annurev-ento-031616-035425 CrossRefPubMedGoogle Scholar
  21. Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutebi JP (2016) Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol. doi: 10.1093/jme/tjw072 PubMedCentralGoogle Scholar
  22. Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4(Suppl 1):1–40Google Scholar
  23. Hawley WA, Pumpuni CB, Copeland RS, Brady RH, Craig GB (1987) Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236:1114–1116. doi: 10.1126/science.3576225 CrossRefPubMedGoogle Scholar
  24. Hobbs JH, Hughes EA, Eichold BH (1991) Replacement of Aedes aegypti by Aedes albopictus in Mobile, Alabama. J Am Mosq Control Assoc 7:488–489PubMedGoogle Scholar
  25. Honório NA, Castro MG, Barros FSM, Magalhães MAFM, Sabroza PC (2009a) The spatial distribution of Aedes aegypti and Aedes albopictus in a transition zone, Rio de Janeiro, Brazil. Cad Saúde Pública 25:1203–1214CrossRefPubMedGoogle Scholar
  26. Honório NA, Codeço CT, Alves FC, Magalhães MA, Lourenço-de-Oliveira R (2009b) Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. J Med Entomol 46:1001–1014. doi: 10.1603/033.046.0505 CrossRefPubMedGoogle Scholar
  27. Juliano SA (1998) Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79:255–268. doi: 10.2307/176880 CrossRefGoogle Scholar
  28. Juliano SA (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu Rev Entomol 54:37–56. doi: 10.1146/annurev.ento.54.110807.090611 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Juliano SA (2010) Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr J Ecol Evol 56:325–351. doi: 10.1560/IJEE.55.3-4.325 CrossRefPubMedGoogle Scholar
  30. Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574. doi: 10.1111/j.1461-0248.2005.00755 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Juliano SA, Lounibos LP, O’Meara GF (2004) A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion. Oecologia 139:583–593. doi: 10.1007/s00442-004-1532-4 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kaplan L, Kendell D, Robertson D, Livdahl T, Khatchikian C (2010) Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion, invasion and extinction. Biol Invas 9:3277–3288. doi: 10.1007/s10530-010-9721-z CrossRefGoogle Scholar
  33. Kishi S, Nakazawa T (2013) Analysis of species coexistence co-mediated by resource competition and reproductive interference. Popul Ecol 55:305–313. doi: 10.1007/s10144-013-0369-2 CrossRefGoogle Scholar
  34. Lima-Camara TN, Codeço CT, Honório NA, Bruno RV, Peixoto AA, Lounibos LP (2013) Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females. Mem Inst Oswaldo Cruz 108:18–25. doi: 10.1590/0074-0276130381 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772CrossRefPubMedGoogle Scholar
  36. Lockwood JL (2006) Life in a double-hotspot: the transformation of Hawaiian passerine bird diversity following invasion and extinction. Biol Invas 8:449–457. doi: 10.1007/s10530-005-6415-z CrossRefGoogle Scholar
  37. Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266. doi: 10.1146/annurev.ento.47.091201.145206 CrossRefPubMedGoogle Scholar
  38. Lounibos LP (2007) Competitive displacement and reduction. J Am Mosq Control Assoc 23(Suppl #2):276–282. doi: 10.2987/8756-971X(2007)23[276:CDAR]2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lounibos LP, Escher RL, Lourenço-de-Oliveira R (2003) Asymmetric evolution of photoperiodic diapause in temperate and tropical populations of Aedes albopictus (Diptera: Culicidae). Ann Entomol Soc Am 96:512–518. doi: 10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2 CrossRefGoogle Scholar
  40. Lounibos LP, Bargielowski IE, Carrasquilla MC, Nishimura N (2016) Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in peninsular Florida two decades after competitive displacements. J Med Entomol. doi: 10.1093/jme/tjw122 Google Scholar
  41. Luan JB, De Barro PJ, Ruan YM, Liu SS (2013) Distinct behavioural strategies underlying asymmetric mating interactions between invasive and indigenous whiteflies. Entomol Exp Appl 146:186–194. doi: 10.1111/eea.12016 CrossRefGoogle Scholar
  42. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  43. Manni M, Guglielmino CR, Scolari F, Vega-Rúa A, Failloux AB, Somboon P, Lisa A, Savini G, Bonizzoni M, Gomulski LM, Malacrida AR, Gasperi G (2017) Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector Aedes albopictus. PLoS NTD 11(1):e0005332Google Scholar
  44. Moore CG (1999) Aedes albopictus in the United States: current status and prospects for further spread. J Am Mosq Control Assoc 15:221–227PubMedGoogle Scholar
  45. Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux A-B (2005) Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res (Camb) 86:1–11. doi: 10.1017/S0016672305007627 CrossRefGoogle Scholar
  46. Nasci RS, Hare SG, Willis FS (1989) Interspecific mating between Louisiana strains of Aedes albopictus and Aedes aegypti in the field and laboratory. J Am Mosq Cont Assoc 5:416–421Google Scholar
  47. Navarro JC, Quintero L, Zorilla A, Gonzalez R (2013) Molecular tracing with mitochondrial ND5 of the invasive mosquito Aedes (Stegomyia) albopictus (Skuse) in northern South America. J Entomol Zool Stud 1:32–38Google Scholar
  48. O’Meara GF, Gettman AD, Evans LF, Scheel FD (1992) Invasion of cemeteries in Florida by Aedes albopictus. J Am Mosq Cont Assoc 8:1–10Google Scholar
  49. O’Meara GF, Gettman AD, Evans LF, Curtis GA (1993) The spread of Aedes albopictus in Florida. Am Entomol 39:163–173. doi: 10.1093/ae/39.3.163 CrossRefGoogle Scholar
  50. O’Meara GF, Evans LF Jr, Gettman AD, Cuda JP (1995) Spread of Ae. albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32:554–562CrossRefPubMedGoogle Scholar
  51. Pancetti FG, Honório NA, Urbinatti PR, Lima-Camara TN (2015) Twenty-eight years of Aedes albopictus in Brazil: a rationale to maintain active entomological and epidemiological surveillance. Rev Soc Bras Med Trop 48(1):87–89. doi: 10.1590/0037-8682-0155-2014 CrossRefPubMedGoogle Scholar
  52. Reiter P, Sprenger D (1987) The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J Am Mosq Cont Assoc 3:494–501Google Scholar
  53. Reitz SR, Trumble JT (2002) Competitive displacement among insects and arachnids. Ann Rev Entomol 47:435–465. doi: 10.1146/annurev.ento.47.091201.145227 CrossRefGoogle Scholar
  54. Rey JR, Nishimura N, Wagner B, Braks MAH, O’Connell SM, Lounibos LP (2006) Habitat segregation of mosquito arbovirus vectors in South Florida. J Med Entomol 43:1134–1141. doi: 10.1603/0022-2585(2006)43[1134:HSOMAV]2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ribeiro JM (1988) Can satyrs control pests and vectors? J Med Entomol 25:431–440. doi: 10.1093/jmedent/25.6.431 CrossRefPubMedGoogle Scholar
  56. Ribeiro JMC, Spielman A (1986) The satyr effect: a model predicting parapatry and species extinction. Am Nat 128:513–528CrossRefGoogle Scholar
  57. Ríos-Velásquez CM, Codeço CT, Honório NA, Sabroza PS, Moresco M, Cunha IC, Levino A, Toledo LM, Luz SL (2007) Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Mem Inst Oswaldo Cruz 102:617–623. doi: 10.1590/S0074-02762007005000076 CrossRefPubMedGoogle Scholar
  58. Santos RLC (2003) Updating of the distribution of Aedes albopictus in Brazil (1997–2002). Rev Saúde Publ 37:671–673CrossRefGoogle Scholar
  59. SAS Institute Inc (2012) SAS users guide: statistics. Version 9.3. SAS Institute, Cary NCGoogle Scholar
  60. Secretaria de Estado de Saúde—SES (2015) Informe Epidemiológico 004/2015. Levantamento de índice rápido do Aedes aegypti-LIRAa (incluindo levantamento sobre o Aedes albopictus). Accessed 4 Jan 2017
  61. Secretaria de Estado de Saúde—SES (2016) Informe Epidemiológico 002/2016. Levantamento de índice rápido do Aedes aegypti-LIRAa (incluindo levantamento sobre o Aedes albopictus). Accessed 4 Jan 2017
  62. Soghigian J, Gibbs K, Stanton A, Kaiser R, Livdahl T (2014) Sexual harassment and feeding inhibition between two invasive dengue vectors. Environ Health Insights 8(S2):61–66. doi: 10.4137/EHI.S16007 PubMedGoogle Scholar
  63. Sprenger D, Wuithiranyagool T (1986) The discovery and distribution of Aedes albopictus in Harris county, Texas. J Am Mosq Cont Assoc 2:217–219Google Scholar
  64. Tabachnick WJ (1991) Evolutionary genetics and arthropod-borne disease. The yellow fever mosquito. Am Entomol 37:14–24. doi: 10.1093/ae/37.1.14 CrossRefGoogle Scholar
  65. TerHorst CP, Lau JA (2015) Genetic variations in invasive species response to direct and indirect species interactions. Biol Invas 17:651–659. doi: 10.1007/s10530-014-0756-4 CrossRefGoogle Scholar
  66. Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM (2011) Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Am J Trop Med Hyg 85:265–270. doi: 10.4269/ajtmh.2011.10-0677 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Urbanski J, Mogi M, O’Donnell D, DeCotiis M, Toma T, Armbruster P (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500. doi: 10.1086/664709 CrossRefPubMedGoogle Scholar
  68. Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Florida Medical Entomology LaboratoryUniversity of FloridaVero BeachUSA
  2. 2.Laboratório de Mosquitos Transmissores de Hematozoários-LATHEMAInstituto Oswaldo CruzRio de JaneiroBrazil
  3. 3.Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove, Fundação Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations