Skip to main content
Log in

Predicting plant invaders in the Mediterranean through a weed risk assessment system

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Risk assessment schemes have been developed to identify potential invasive species, prevent their spread and reduce their damaging effects. One of the most promising tools for detecting plant invaders is the weed risk assessment (WRA) scheme developed for Australia. Our study explores whether the Australian WRA can satisfactorily predict the invasion status of alien plants in the Mediterranean Basin by screening 100 invasive and 97 casual species in Spain. Furthermore, we analysed whether the factors taken into account in the WRA are linked to invasion likelihood (i.e., invasion status) or to impacts. The outcome was that 94% of the invasive species were rejected, 50% of the casual species were rejected and 29% of them required further evaluation. The accuracy for casuals is lower than in other studies that have tested non-invasive (i.e., casuals or non-escaped) alien species. We postulate that low accuracy for casual species could result from: (1) an incorrect “a priori” expert classification of the species status, (2) a high weight of the WRA scores given to potential impacts, and (3) casual species being prone to becoming invasive when reaching a minimum residence time threshold. Therefore, the WRA could be working as a precaution early-warning system to identify casual species with potential to become invasive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen MC, Adams H, Hope B, Powell M (2004) Risk assessment for invasive species. Risk Anal 24(4):787–793. doi:10.1111/j.0272-4332.2004.00478.x

    Article  PubMed  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Blackburn TM, Duncan RP (2001) Determinants of establishment success in introduced birds. Nature 414:195–197. doi:10.1038/35102557

    Article  CAS  PubMed  Google Scholar 

  • Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans, 3rd edn. Ketrès, Barcelona

    Google Scholar 

  • Brändle M, Stadler J, Klotz S, Brandl R (2003) Distributional range size of weedy plant species is correlated to germination patterns. Ecology 84:136–144. doi:10.1890/0012-9658(2003)084[0136:DRSOWP]2.0.CO;2

    Article  Google Scholar 

  • Caley P, Kuhnert PM (2006) Application and evaluation of classification trees for screening unwanted plants. Austral Ecol 31:647–655. doi:10.1111/j.1442-9993.2006.01617.x

    Article  Google Scholar 

  • Caley P, Lonsdale WM, Pheloung PC (2006) Quantifying uncertainty in predictions of invasiveness. Biol Invasions 8:277–286. doi:10.1007/s10530-004-6703-z

    Article  Google Scholar 

  • Caley P, Groves RH, Barker R (2008) Estimating the invasion success of introduced plants. Divers Distrib 14:196–203. doi:10.1111/j.1472-4642.2007.00440.x

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Castroviejo S, Laínz M, López G, Montserrat P, Muñoz F, Paiva J, Villar L (eds) (1986–2000) Flora Ibérica. Real Jardín Botánico, CSIC, Madrid

  • Colautti RI, Ricciardi A, Grigorovich IA, Maclsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733. doi:10.1111/j.1461-0248.2004.00616.x

    Article  Google Scholar 

  • Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, Chichester

    Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329. doi:10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  • Crosti R, Cascone C, Testa W (2007) Towards a weed risk assessment for the Italian peninsula: preliminary validation of a scheme for the central Mediterranean region in Italy. In: Rokich D, Wardell-Johnson G, Yates C, Stevens J, Dixon K, McLellan R, Moss G (eds) Proceedings, International Mediterranean Ecosystems Conference, Perth, Australia, 2–5 September 2007, pp 53–54

  • Daehler CC (1998) Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spatina alterniflora). Evol Ecol 12:553–568. doi:10.1023/A:1006556709662

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. doi:10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  • Daehler CC, Carino DA (2000) Predicting invasive plants: prospects for general screening system based on current regional models. Biol Invasions 2:93–102. doi:10.1023/A:1010002005024

    Article  Google Scholar 

  • Daehler CC, Denslow J, Ansari S, Kuo H-C (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific Islands. Conserv Biol 18:360–368. doi:10.1111/j.1523-1739.2004.00066.x

    Article  Google Scholar 

  • DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845. doi:10.2307/2531595

    Article  CAS  PubMed  Google Scholar 

  • Di Castri F (1989) History of biological invasions with special emphasis on the Old Word. In: Drake JA (ed) Biological invasions: a global perspective. Wiley, Chichester

    Google Scholar 

  • Goodwin BJ, Mcallister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426. doi:10.1046/j.1523-1739.1999.013002422.x

    Article  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied regions. Divers Distrib 14:234–242. doi:10.1111/j.1472-4642.2007.00460.x

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321. doi:10.1023/B:BINV.0000005568.44154.12

    Article  Google Scholar 

  • Hughes G, Madden LV (2003) Evaluating predictive models with application in regulatory policy for invasive weeds. Agric Syst 76:755–774. doi:10.1016/S0308-521X(02)00164-6

    Article  Google Scholar 

  • Kato H, Hata K, Yamamoto H, Yoshioka T (2006) Effectiveness of the weed risk assessment system for the Bonin Islands. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Assessment and control of biological invasion risk. Shoukadoh Book Sellers, Kyoto, Japan and IUCN, Gland, Switzerland pp 65–72

  • Keller RP, Drake JM, Lodge DM (2007a) Fecundity as a basis for risk assessment of nonindigenous freshwater Molluscs. Conserv Biol 21:191–200. doi:10.1111/j.1523-1739.2006.00563.x

    Article  PubMed  Google Scholar 

  • Keller RP, Lodge DM, Finnoff DC (2007b) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci USA 104:203–207. doi:10.1073/pnas.0605787104

    Article  CAS  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi:10.1016/S0169-5347(01)02101-2

    Article  PubMed  Google Scholar 

  • Křivánek M, Pyšek P (2006) Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic (Central Europe). Divers Distrib 12:319–327. doi:10.1111/j.1366-9516.2006.00249.x

    Article  Google Scholar 

  • Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L (2005) The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 38:404–415. doi:10.1016/j.jbi.2005.02.008

    Article  PubMed  Google Scholar 

  • Lepš J, Šmilauer P (2006) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Biol Sci 269:2407–2413. doi:10.1098/rspb.2002.2179

    Article  Google Scholar 

  • Lloret F, Médail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE (2005) Species attributes and invasion success by alien plants on Mediterranean islands. J Ecol 93:512–520. doi:10.1111/j.1365-2745.2005.00979.x

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004

    Article  PubMed  Google Scholar 

  • McNeely JA, Mooney HA, Neville LE, Schei PJ, Waage JK (eds) (2001) A global strategy on invasive alien species. IUCN, Gland

    Google Scholar 

  • Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Mo Bot Gard 84:112–127. doi:10.2307/2399957

    Article  Google Scholar 

  • National Invasive Species Council (2001) Management plan: meeting the invasive species challenge. Washington, DC. Available from http://www.invasivespeciesinfo.gov/docs/council/mpfinal.pdf. Accessed August 2007

  • Pheloung PC (1995) Determining the weed potential of new plant introductions to Australia. Agriculture Protection Board Report. West Australian Department of Agriculture, Perth

    Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251. doi:10.1006/jema.1999.0297

    Article  Google Scholar 

  • Pyšek P (2001) Past and future of predictions in plant invasions: a field test by time. Divers Distrib 7:145–151. doi:10.1046/j.1366-9516.2001.00107.x

    Article  Google Scholar 

  • Pyšek P, Jarosík V (2005) Residence time determines the distribution of alien plants. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhauser Verlag, Switzerland

    Google Scholar 

  • Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143. doi:10.2307/4135498

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from http://www.R-project.org

  • Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203. doi:10.1046/j.1523-1739.1997.95473.x

    Article  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi:10.2307/2265768

    Article  Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi:10.1191/0309133306pp490pr

    Article  Google Scholar 

  • Richardson DM, Thuiller W (2007) Home away from home—objective mapping of high-risk source areas for plant introductions. Divers Distrib 13:299–312

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000a) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000b) Plant invasions—the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93. doi:10.1017/S0006323199005435

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Elorza M, Dana ED, Sobrino E (2004) Atlas de las plantas alóctonas invasoras de España. Dirección General para la Biodiversidad, Madrid

    Google Scholar 

  • Smith CS, Lonsdale WM, Fortune J (1999) When to ignore advice: invasion predictions and decision theory. Biol Invasions 1:89–96. doi:10.1023/A:1010091918466

    Article  Google Scholar 

  • Sol D, Vilà M, Kühn I (2008) The comparitive analysis of historical alien introductions. Biol Invasions 10:1119–1129. doi:10.1007/s10530-007-9189-7

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Rouget M, Proches S, Wilson JRU (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:1755–1769. doi:10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Union of Concerned Scientists (2001) The science of invasive species. An information update by the Union of Concerned Scientists, http://www.ucsusa.org/ssi/invasive-species/science-of-invasive-species.html. Accessed 27 July 2006

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Vilà M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217. doi:10.1023/A:1010003603310

    Article  Google Scholar 

  • Westbrooks R (1981) Introduction of foreign noxious plants into the United States. Weeds Today 14:16–17

    Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London

    Google Scholar 

  • Wittenberg R, Cock MJW (eds) (2001) Invasive Alien species: a toolkit of best prevention and management practices. CAB International, Wallingford

    Google Scholar 

Download references

Acknowledgments

We thank I. Kühn and P. Pyšek for providing the WRA excel application; and C. Daehler and three anonymous reviewers for comments on an early version of the manuscript. This study has been partially financed by the 6th Framework Programme of the European Commission projects ALARM (Assessing large-scale environmental risks for biodiversity with tested methods. GOCE-CT-2003-506675; http://www.alarmproject.net/alarm/) and DAISIE (Delivering alien invasive species inventories for Europe. SSPI-CT-2003-511202; http://www.europe-aliens.org/) and the Spanish Ministerio de Ciencia e Innovación CONSOLIDER project MONTES (Spanish woodlands and global change: threats and opportunities. CSD2008-00040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Gassó.

Appendices

Appendix 1

See Table 3.

Table 3 Table of correspondences between the adapted questions from the Australian weed risk assessment system of Pheloung et al. (1999) (WRA) to our study, and abbreviations used in our analysis

Appendix 2

See Table 4.

Table 4 Species used to test if the Australian weed risk assessment system (WRA) of Pheloung et al. (1999) was suitable to predict (A) 100 invasive (A) and (B) 97 casual species in Spain. The final WRA score is given

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassó, N., Basnou, C. & Vilà, M. Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Invasions 12, 463–476 (2010). https://doi.org/10.1007/s10530-009-9451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9451-2

Keywords

Navigation